Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wan-Ke Zhang is active.

Publication


Featured researches published by Wan-Ke Zhang.


Theoretical and Applied Genetics | 2003

An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress

Yi-Guo Shen; Wan-Ke Zhang; S.-J. He; Junzhe Zhang; Qiang Liu; Shu-Mei Chen

Abstract.We characterize one transcription factor of DRE-binding proteins (TaDREB1) that was isolated from a drought-induced cDNA library of wheat (Triticum aestivum L.). TaDREB1 contains one conserved EREBP/AP2 domain, and shows similarity with Arabidopsis thaliana DREB family members in both overall amino-acid sequences and the secondary structure arrangement within the DNA-binding motifs. In yeast one-hybrid system, TaDREB1, can specially activate the genes fused with the promoter containing three tandemly repeated copies of the wild-type DRE sequence: TACCGACAT. In different wheat cultivars, the Ta DREB1 gene is induced by low temperature, salinity and drought; and the expression of Wcs120 that contains DRE motifs in its promoter is closely related to the expression of TaDREB1. These results suggest that TaDREB1 functions as a DRE-binding transcription factor in wheat. We also observed the dwarf phenotype in transgenic rice (T0) overexpressing TaDREB1.


BMC Plant Biology | 2011

Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing.

Qingxin Song; Yun-Feng Liu; Xing-Yu Hu; Wan-Ke Zhang; Biao Ma; Shou-Yi Chen; Zhang J

BackgroundMicroRNAs (miRNAs) regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max) is limited, and global identification of the related miRNA targets has not been reported in previous research.ResultsIn our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3) was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis.ConclusionsWe have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.


Plant Journal | 2011

Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants

Yu-Jun Hao; Wei Wei; Qingxin Song; Hao-Wei Chen; Yu-Qin Zhang; Fang Wang; Hong-Feng Zou; Gang Lei; Ai-Guo Tian; Wan-Ke Zhang; Biao Ma; Zhang J; Shou-Yi Chen

NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.


Plant Cell and Environment | 2012

Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants

Can-Fang Niu; Wei Wei; Qi-Yun Zhou; Ai-Guo Tian; Yu-Jun Hao; Wan-Ke Zhang; Biao Ma; Qing Lin; Zhengbin Zhang; Zhang J; Shou-Yi Chen

WRKY-type transcription factors are involved in multiple aspects of plant growth, development and stress response. WRKY genes have been found to be responsive to abiotic stresses; however, their roles in abiotic stress tolerance are largely unknown especially in crops. Here, we identified stress-responsive WRKY genes from wheat (Triticum aestivum L.) and studied their functions in stress tolerance. Forty-three putative TaWRKY genes were identified and two multiple stress-induced genes, TaWRKY2 and TaWRKY19, were further characterized. TaWRKY2 and TaWRKY19 are nuclear proteins, and displayed specific binding to typical cis-element W box. Transgenic Arabidopsis plants overexpressing TaWRKY2 exhibited salt and drought tolerance compared with controls. Overexpression of TaWRKY19 conferred tolerance to salt, drought and freezing stresses in transgenic plants. TaWRKY2 enhanced expressions of STZ and RD29B, and bound to their promoters. TaWRKY19 activated expressions of DREB2A, RD29A, RD29B and Cor6.6, and bound to DREB2A and Cor6.6 promoters. The two TaWRKY proteins may regulate the downstream genes through direct binding to the gene promoter or via indirect mechanism. Manipulation of TaWRKY2 and TaWRKY19 in wheat or other crops should improve their performance under various abiotic stress conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Insights into salt tolerance from the genome of Thellungiella salsuginea.

Hua-Jun Wu; Zhonghui Zhang; Wang J; Dong-Ha Oh; Maheshi Dassanayake; Binghang Liu; Quanfei Huang; Hai-Xi Sun; Ran Xia; Yaorong Wu; Yi-Nan Wang; Zhao Yang; Yang Liu; Wan-Ke Zhang; Huawei Zhang; Jinfang Chu; Cunyu Yan; Shuang Fang; Zhang J; Yiqin Wang; Fengxia Zhang; Guodong Wang; Sang Yeol Lee; John M. Cheeseman; Bicheng Yang; Bo Li; Jiumeng Min; Linfeng Yang; Jun Wang; Chengcai Chu

Thellungiella salsuginea, a close relative of Arabidopsis, represents an extremophile model for abiotic stress tolerance studies. We present the draft sequence of the T. salsuginea genome, assembled based on ∼134-fold coverage to seven chromosomes with a coding capacity of at least 28,457 genes. This genome provides resources and evidence about the nature of defense mechanisms constituting the genetic basis underlying plant abiotic stress tolerance. Comparative genomics and experimental analyses identified genes related to cation transport, abscisic acid signaling, and wax production prominent in T. salsuginea as possible contributors to its success in stressful environments.


Cell Research | 2008

Soybean GmMYB76 , GmMYB92 , and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants

Yong Liao; Hong-Feng Zou; Hui-Wen Wang; Wan-Ke Zhang; Biao Ma; Zhang J; Shou-Yi Chen

MYB-type transcription factors contain the conserved MYB DNA-binding domain of approximately 50 amino acids and are involved in the regulation of many aspects of plant growth, development, metabolism and stress responses. From soybean plants, we identified 156 GmMYB genes using our previously obtained 206 MYB unigenes, and 48 were found to have full-length open-reading frames. Expressions of all these identified genes were examined, and we found that expressions of 43 genes were changed upon treatment with ABA, salt, drought and/or cold stress. Three GmMYB genes, GmMYB76, GmMYB92 and GmMYB177, were chosen for further analysis. Using the yeast assay system, GmMYB76 and GmMYB92 were found to have transactivation activity and can form homodimers. GmMYB177 did not appear to have transactivation activity but can form heterodimers with GmMYB76. Yeast one-hybrid assay revealed that all the three GmMYBs could bind to cis-elements TAT AAC GGT TTT TT and CCG GAA AAA AGG AT, but with different affinity, and GmMYB92 could also bind to TCT CAC CTA CC. The transgenic Arabidopsis plants overexpressing GmMYB76 or GmMYB177 showed better performance than the GmMYB92-transgenic plants in salt and freezing tolerance. However, these transgenic plants exhibited reduced sensitivity to ABA treatment at germination stage in comparison with the wild-type plants. The three GmMYB genes differentially affected a subset of stress-responsive genes in addition to their regulation of a common subset of stress-responsive genes. These results indicate that the three GmMYB genes may play differential roles in stress tolerance, possibly through regulation of stress-responsive genes.


The Plant Cell | 2009

The Ethylene Receptor ETR2 Delays Floral Transition and Affects Starch Accumulation in Rice

Hada Wuriyanghan; Bo Zhang; Wan-Hong Cao; Biao Ma; Gang Lei; Yun-Feng Liu; Wei Wei; Hua-Jun Wu; Li-Juan Chen; Hao-Wei Chen; Yangrong Cao; Sijie He; Wan-Ke Zhang; Xiu-Jie Wang; Shou-Yi Chen; Zhang J

Ethylene regulates multiple aspects of plant growth and development in dicotyledonous plants; however, its roles in monocotyledonous plants are poorly known. Here, we characterized a subfamily II ethylene receptor, ETHYLENE RESPONSE2 (ETR2), in rice (Oryza sativa). The ETR2 receptor with a diverged His kinase domain is a Ser/Thr kinase, but not a His kinase, and can phosphorylate its receiver domain. Mutation of the N box of the kinase domain abolished the kinase activity of ETR2. Overexpression of ETR2 in transgenic rice plants reduced ethylene sensitivity and delayed floral transition. Conversely, RNA interference (RNAi) plants exhibited early flowering and the ETR2 T-DNA insertion mutant etr2 showed enhanced ethylene sensitivity and early flowering. The effective panicles and seed-setting rate were reduced in the ETR2-overexpressing plants, while thousand-seed weight was substantially enhanced in both the ETR2-RNAi plants and the etr2 mutant compared with controls. Starch granules accumulated in the internodes of the ETR2-overexpressing plants, but not in the etr2 mutant. The GIGANTEA and TERMINAL FLOWER1/CENTRORADIALIS homolog (RCN1) that cause delayed flowering were upregulated in ETR2-overexpressing plants but downregulated in the etr2 mutant. Conversely, the α-amylase gene RAmy3D was suppressed in ETR2-overexpressing plants but enhanced in the etr2 mutant. Thus, ETR2 may delay flowering and cause starch accumulation in stems by regulating downstream genes.


Theoretical and Applied Genetics | 2003

Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis

Yi-Guo Shen; Wan-Ke Zhang; Dong-Qing Yan; Baoxing Du; Zhang J; Qiang Liu; Shou-Yi Chen

Environmental stresses, such as salinity, drought and cold, can induce the expression of a large amount of genes. Among these are many transcription factors that regulate the expression of downstream genes by specifically binding to cis-elements or forming transcriptional complexes with other proteins. In the present study, a DREB-like transcription factor gene, named AhDREB1, was isolated from a halophyte Atriplex hortensis. AhDREB1 encoded a protein containing a conserved EREBP/AP2 domain featuring the DREB family. In yeast one-hybrid analysis AhDREB1 protein was specifically bound to DRE elements and activated the expression of the reporter genes of HIS3 and LacZ. The AhDREB1 gene was expressed in roots, stems and leaves of A. hortensis. Salinity induced its expression in roots, but not in other organs. Overexpression of AhDREB1 in transgenic tobacco led to the accumulation of its putative downstream genes. The performance of the transgenic lines was also tested under stressed conditions and two lines were found to be stress-tolerant. These results suggest that the AhDREB1 protein functions as a DRE-binding transcription factor and play roles in the stress-tolerant response of A. hortensis.


Planta | 2010

Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

Yu-Jun Hao; Qingxin Song; Hao-Wei Chen; Hong-Feng Zou; Wei Wei; Xu-Sheng Kang; Biao Ma; Wan-Ke Zhang; Zhang J; Shou-Yi Chen

Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.


PLOS ONE | 2009

Soybean Trihelix Transcription Factors GmGT-2A and GmGT-2B Improve Plant Tolerance to Abiotic Stresses in Transgenic Arabidopsis

Zong-Ming Xie; Hong-Feng Zou; Gang Lei; Wei Wei; Qi-Yun Zhou; Can-Fang Niu; Yong Liao; Ai-Guo Tian; Biao Ma; Wan-Ke Zhang; Zhang J; Shou-Yi Chen

Background Trihelix transcription factors play important roles in light-regulated responses and other developmental processes. However, their functions in abiotic stress response are largely unclear. In this study, we identified two trihelix transcription factor genes GmGT-2A and GmGT-2B from soybean and further characterized their roles in abiotic stress tolerance. Findings Both genes can be induced by various abiotic stresses, and the encoded proteins were localized in nuclear region. In yeast assay, GmGT-2B but not GmGT-2A exhibits ability of transcriptional activation and dimerization. The N-terminal peptide of 153 residues in GmGT-2B was the minimal activation domain and the middle region between the two trihelices mediated the dimerization of the GmGT-2B. Transactivation activity of the GmGT-2B was also confirmed in plant cells. DNA binding analysis using yeast one-hybrid assay revealed that GmGT-2A could bind to GT-1bx, GT-2bx, mGT-2bx-2 and D1 whereas GmGT-2B could bind to the latter three elements. Overexpression of the GmGT-2A and GmGT-2B improved plant tolerance to salt, freezing and drought stress in transgenic Arabidopsis plants. Moreover, GmGT-2B-transgenic plants had more green seedlings compared to Col-0 under ABA treatment. Many stress-responsive genes were altered in GmGT-2A- and GmGT-2B-transgenic plants. Conclusion These results indicate that GmGT-2A and GmGT-2B confer stress tolerance through regulation of a common set of genes and specific sets of genes. GmGT-2B also affects ABA sensitivity.

Collaboration


Dive into the Wan-Ke Zhang's collaboration.

Top Co-Authors

Avatar

Shou-Yi Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Biao Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Sijie He

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiang Lu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hao-Wei Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qing-Tian Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jian-Jun Tao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qingxin Song

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge