Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haobo Fan is active.

Publication


Featured researches published by Haobo Fan.


Mathematical Problems in Engineering | 2016

Investigation Progresses and Applications of Fractional Derivative Model in Geotechnical Engineering

Jinxing Lai; Sheng Mao; Junling Qiu; Haobo Fan; Qian Zhang; Zhinan Hu; Jianxun Chen

Over the past couple of decades, as a new mathematical tool for addressing a number of tough problems, fractional calculus has been gaining a continually increasing interest in diverse scientific fields, including geotechnical engineering due primarily to geotechnical rheology phenomenon. Unlike the classical constitutive models in which simulation analysis gradually fails to meet the reasonable accuracy of requirement, the fractional derivative models have shown the merits of hereditary phenomena with long memory. Additionally, it is traced that the fractional derivative model is one of the most effective and accurate approaches to describe the rheology phenomenon. In relation to this, an overview aimed first at model structure and parameter determination in combination with application cases based on fractional calculus was provided. Furthermore, this review paper shed light on the practical application aspects of deformation analysis of circular tunnel, rheological settlement of subgrade, and relevant loess researches subjected to the achievements acquired in geotechnical engineering. Finally, concluding remarks and important future investigation directions were pointed out.


International Journal of Distributed Sensor Networks | 2015

Blasting vibration monitoring of undercrossing railway tunnel using wireless sensor network

Jinxing Lai; Haobo Fan; Jianxun Chen; Junling Qiu; Ke Wang

The construction blasting in a new tunnel will undoubtedly influence the structure of existing tunnel. In order to monitor the effect of the blast-induced vibration on the structure of existing tunnel, a wireless sensor network (WSN) was established, which included the blast vibration monitoring system and the wireless remote data acquisition system. An existing railway tunnel was monitored during the construction of a new tunnel in Shaanxi, China. Concrete strain and peak particle velocity (PPV) were adopted to evaluate the influence of new tunnel construction blasting on the structure of existing tunnel. The monitoring results indicated that the concrete strain was different before and after the two tunnels crossing, which was much larger in front of the excavation face, and then it decreased gradually after the crossing. The PPV at the side wall of existing tunnel toward the blasting source was quite higher, and the location of maximum PPV changes with the process of tunnel excavation. When the distance between the existing and new tunnels was 4 m, the PPV reached 11.83 cm/s, which was already beyond the safe value, so the explosive charge should be reduced.


Journal of Sensors | 2016

Fiber Bragg Grating Sensors-Based In Situ Monitoring and Safety Assessment of Loess Tunnel

Jinxing Lai; Junling Qiu; Haobo Fan; Qian Zhang; Zhinan Hu; Junbao Wang; Jianxun Chen

Compared with electrical strain gauges, fiber Bragg grating (FBG) sensing technology is a relatively novel method for tunnel structural health monitoring, which has a number of advantages including high accuracy, multiplexing, electromagnetic interference resistance, and good repeatability. In order to study the internal force of the tunnel liner and detect the potential safety hazards, series of strain monitoring tests of a loess tunnel, taking into account the complex stress and strain variation of the loess during tunnelling, were performed by employing the tandem linear FBG sensor arrays controlled by the wavelength division multiplexing (WDM) technology. The concrete strain has obvious linear characteristics over time in the early stage and then gradually tends to a stable value. Moreover, after the necessary temperature compensation, loess tunnel structure safety was assessed through the analysis of real-time strain and internal force of the liner concrete, and the FBG monitoring data and safety assessment results indicate that the safety factors of various liner sections all meet the code requirements, which verify the safety and stability of the tunnel liner structure. The FBG sensors-based in situ monitoring technology can be well applied in the loess tunnel structure safety assessment.


Arabian Journal of Geosciences | 2017

Centrifuge modelling of twin-tunnelling induced ground movements in loess strata

Junling Qiu; Yongli Xie; Haobo Fan; Zhichao Wang; Yuwei Zhang

A great concern for the safety of large cross-section tunnels, which are being or to be built in the loess strata of China, is attracted. Generally, loess is a multi-phase porous medium and develops complex stress and strain variation while executing a tunnel project. Another problem is that the soil surrounding both tunnel arches is subjected to a complex loading due to the double excavation. To obtain an in-depth knowledge of the mechanism of tunnel deformation induced by the twin-tunnelling, we conducted comprehensive centrifuge tests, which can simulate and reproduce strictly the action process of twin-tunnelling. Through the model tests, the response of twin-tunnelling on loess stratum deformation was obtained. The investigations showed that with the increase of tunnel spacing, the stratum deformation distribution near the vault changes from a single-peak V shape to a double-peak W shape. Additionally, the height of the stratum pressure arch effect increases significantly. The settlement of the preceding tunnel is slightly larger than that of the latter tunnel, and the twin-tunnelling effect gradually decreases with the increase of tunnel spacing. Through comparative analysis of the different combinations of tunnel spacing and tunnel interval, the interaction between two tunnels with different spacing and interval during tunnelling was investigated, further optimizing the reasonable tunnel spacing and construction steps, as well as providing reference for tunnel route selection in the loess strata.


Computational Intelligence and Neuroscience | 2016

Prediction of soil deformation in tunnelling using artificial neural networks

Jinxing Lai; Junling Qiu; Zhihua Feng; Jianxun Chen; Haobo Fan

In the past few decades, as a new tool for analysis of the tough geotechnical problems, artificial neural networks (ANNs) have been successfully applied to address a number of engineering problems, including deformation due to tunnelling in various types of rock mass. Unlike the classical regression methods in which a certain form for the approximation function must be presumed, ANNs do not require the complex constitutive models. Additionally, it is traced that the ANN prediction system is one of the most effective ways to predict the rock mass deformation. Furthermore, it could be envisaged that ANNs would be more feasible for the dynamic prediction of displacements in tunnelling in the future, especially if ANN models are combined with other research methods. In this paper, we summarized the state-of-the-art and future research challenges of ANNs on the tunnel deformation prediction. And the application cases as well as the improvement of ANN models were also presented. The presented ANN models can serve as a benchmark for effective prediction of the tunnel deformation with characters of nonlinearity, high parallelism, fault tolerance, learning, and generalization capability.


Advances in Materials Science and Engineering | 2015

New Technology and Experimental Study on Snow-Melting Heated Pavement System in Tunnel Portal

Jinxing Lai; Junling Qiu; Jianxun Chen; Haobo Fan; Ke Wang

In recent years, with the rapid growth of economy and sharp rise of motor vehicles in China, the pavement skid resistance in tunnel portals has become increasingly important in cold region. However, the deicing salt, snow removal with machine, and other antiskid measures adopted by highway maintenance division have many limitations. To improve the treatment effect, we proposed a new snow-melting approach employing electric heat tracing, in which heating cables are installed in the structural layer of road. Through the field experiment, laboratory experiment, and numerical investigation, structure type, heating power, and preheating time of the flexible pavement heating system in tunnel portal were systematically analyzed, and advantages of electric heat tracing technology in improving the pavement skid resistance in tunnel portal were also presented. Therefore, such new technology, which offers new snow-melting methods for tunnel portal, bridge, mountainous area, and large longitudinal slope in cold region, has promising prospect for extensive application.


Royal Society Open Science | 2017

Building information modelling review with potential applications in tunnel engineering of China

Weihong Zhou; Haiyang Qin; Junling Qiu; Haobo Fan; Jinxing Lai; Ke Wang; Lixin Wang

Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.


Advances in Materials Science and Engineering | 2016

In Situ Test of Grouting Reinforcement for Water-Enriched Sandy Gravel Ground in River Floodplain

Jinxing Lai; Zhihua Feng; Junling Qiu; Jianxun Chen; Haobo Fan

The performance of the ground treatment is always critical for a tunnel excavated in unstable stratum. Laodongnanlu Xiangjiang Tunnel (Changsha, China) across the Xiangjiang River will be constructed in a sandy gravel ground which is characterized by loose structure, extensive porosity, elevated sensitivity, poor stability, and a high groundwater table. Permeation grouting will be employed to improve the bearing capacity and mitigate groundwater movement into the excavation. In order to seek suitable injection parameters and grouting method, a field trial of vertical grouting was conducted in the sandy gravel stratum in river floodplain. A series of tests focusing on grout material, grouting sequence of boreholes, injection pressure, and grouting volume were performed to improve the sandy gravel mass strength and reduce water permeability. The examination of the results obtained during water pressure testing and core drilling on completion of the grouting trial successfully demonstrated that the specified injection criteria had led to an expected effect. Grouting control method of this saturated sandy gravel stratum was concluded after the test, which would contribute to the future pregrouting work during the tunnelling.


Computational Intelligence and Neuroscience | 2014

Application of wireless intelligent control system for HPS lamps and LEDs combined illumination in road tunnel

Jinxing Lai; Junling Qiu; Jianxun Chen; Yaqiong Wang; Haobo Fan

Because of the particularity of the environment in the tunnel, the rational tunnel illumination system should be developed, so as to optimize the tunnel environment. Considering the high cost of traditional tunnel illumination system with high-pressure sodium (HPS) lamps as well as the effect of a single light source on tunnel entrance, the energy-saving illumination system with HPS lamps and LEDs combined illumination in road tunnel, which could make full use of these two kinds of lamps, was proposed. The wireless intelligent control system based on HPS lamps and LEDs combined illumination and microcontrol unit (MCU) Si1000 wireless communication technology was designed. And the remote monitoring, wireless communication, and PWM dimming module of this system were designed emphatically. Intensity detector and vehicle flow detector can be configured in wireless intelligent control system, which gather the information to the master control unit, and then the information is sent to the monitoring center through the Ethernet. The control strategies are got by the monitoring center according to the calculated results, and the control unit wirelessly sends parameters to lamps, which adjust the luminance of each segment of the tunnel and realize the wireless intelligent control of combined illumination in road tunnel.


Advances in Materials Science and Engineering | 2017

Structural Safety Assessment of Existing Multiarch Tunnel: A Case Study

Jinxing Lai; Junling Qiu; Haobo Fan; Jianxun Chen; Zhinan Hu; Qian Zhang; Junbao Wang

Structural health assessment is one of the key activities in maintaining the performance of a tunnel during its service life. Due to the development of modern detection technology, comprehensive structural health assessment system is being established for operating tunnels. To evaluate the actual operational state of Shitigou tunnel, overall detection of the liner crack, tunnel seepage, and liner void was conducted by employing the modern detection technology, such as crack width monitoring technology, concrete strength monitoring technology, and electromagnetic wave nondestructive monitoring technology. Through the statistical analysis of the detection results, the distribution characteristic, development law, and damage grade of structural defects were obtained. Tunnel liner cracks are mainly located on the middle wall; serious water leakage is encountered on the side wall, middle wall, and vault; the strength of foundation and liner structure of left tunnel does not meet the design requirement; the liner voids are mostly located at the tunnel entrance section, especially, on the tunnel vault; and the proportion of influence factors of structural defects should be considered. The research results presented for this study can serve as references for effective design and health assessment of existing multiarch tunnel projects.

Collaboration


Dive into the Haobo Fan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junbao Wang

Xi'an University of Architecture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge