Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haoping Liu is active.

Publication


Featured researches published by Haoping Liu.


Current Opinion in Microbiology | 2001

Transcriptional control of dimorphism in Candida albicans.

Haoping Liu

Candida albicans uses a network of multiple signaling pathways to control the yeast-->hypha transition. These include a mitogen-activated protein kinase pathway through Cph1, the cAMP-dependent protein kinase pathway via Efg1, a pH-responsive pathway through Rim101, the Tup1-mediated repression through Rfg1 and Nrg1, and pathways represented by transcription factors Cph2, Tec1 and Czf1. These pathways control the transcription of a common set of hypha-specific genes, many of which encode known virulence factors. The link between the signaling pathways and hyphal elongation is currently unknown, but there is evidence to suggest that Cdc42 likely plays a key role in hyphal morphogenesis. Unlike pseudohyphal growth in Saccharomyces cerevisiae, hyphal elongation is regulated independently of the cell cycle. Cellular differences between pseudohyphae and hyphae are further revealed by septin localization.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Bistable expression of WOR1, a master regulator of white–opaque switching in Candida albicans

Guanghua Huang; Huafeng Wang; Song Chou; Xinyi Nie; Jiangye Chen; Haoping Liu

Candida albicans, a commensal organism and a pathogen of humans, can switch stochastically between a white phase and an opaque phase without an intermediate phase. The white and opaque phases have distinct cell shapes and gene expression programs. Once switched, each phase is stable for many cell divisions. White–opaque switching is under a1–α2 repression and therefore only happens in a or α cells. Mechanisms that control the switching are unknown. Here, we identify Wor1 (white–opaque regulator 1) as a master regulator of white–opaque switching. The deletion of WOR1 blocks opaque cell formation. The ectopic expression of WOR1 converts all cells to stable opaque cells in a or α cells. In addition, the ectopic expression of WOR1 in a/α cells is sufficient to induce opaque cell formation. Importantly, WOR1 expression displays an all-or-none pattern. It is undetectable in white cells, and it is highly expressed in opaque cells. The ectopic expression of Wor1 induces the transcription of WOR1 from the WOR1 locus, which correlates with the switch to opaque phase. We present genetic evidence for feedback regulation of WOR1 transcription. The feedback regulation explains the bistable and stochastic nature of white–opaque switching.


Cell | 1989

Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton

Haoping Liu; Anthony Bretscher

The yeast tropomyosin gene, designated TPM1, is present in a single copy per haploid genome and encodes a protein with a predicted molecular weight of 23.5 kd. The protein sequence is homologous to higher cell tropomyosins, including the characteristic hydrophobic-hydrophilic pseudoheptapeptide repeats. Indirect immunofluorescence microscopy reveals that tropomyosin is localized with actin cables in wild-type cells. Disruption of TPM1 is not lethal, but results in a reduced growth rate and disappearance of actin cables. Strains carrying the conditional actin mutation act1-2 also lack actin cables; overexpression of tropomyosin in these strains partially restores actin cables. These results strongly suggest that tropomyosin interacts with F actin in vivo and may play an important role in assembling or stabilizing actin cables in yeast.


Molecular Microbiology | 2002

A conserved mitogen‐activated protein kinase pathway is required for mating in Candida albicans

Jiangye Chen; Jing Chen; Shelley Lane; Haoping Liu

Candida albicans had been thought to lack a mating process until the recent discovery of a mating type‐like locus and mating between MTLa and MTLα strains. To elucidate the molecular mechanisms that regulate mating in C. albicans, we examined the function of Cph1 and its upstream mitogen‐activated protein (MAP) kinase pathway in mating, as they are homologues of the pheromone‐responsive MAP kinase pathway in Saccharomyces cerevisiae. We found that overexpressing CPH1 in MTLa, but not in MTLa/α strains, induced the transcription of orthologues of S. cerevisiae pheromone‐induced genes and also increased mating efficiency. Furthermore, cph1 and hst7 mutants were completely defective in mating, and cst20 and cek1 mutants showed reduced mating efficiency, as in S. cerevisiae. The partial mating defect in cek1 results from the presence of a functionally redundant MAP kinase, Cek2. CEK2 complemented the mating defect of a fus3 kss1 mutant of S. cerevisiae and was expressed only in MTLa or MTLα, but not in MTLa/α cell types. Moreover, a cek1 cek2 double mutant was completely defective in mating. Our data suggest that the conserved MAP kinase pathway regulates mating in C. albicans. We also observed that C. albicans mating efficiency was greatly affected by medium composition, indicating the potential involvement of nutrient‐sensing pathways in mating in addition to the MAP kinase pathway.


Cell | 2004

Fus3-Regulated Tec1 Degradation through SCFCdc4 Determines MAPK Signaling Specificity during Mating in Yeast

Song Chou; Lan Huang; Haoping Liu

Signaling specificity is fundamental for parallel mitogen-activated protein kinase (MAPK) cascades that control growth and differentiation in response to different stimuli. In Saccharomyces cerevisiae, components of the pheromone-responsive MAPK cascade activate Fus3 and Kss1 MAPKs to induce mating and Kss1 to promote filamentation. Active Fus3 is required to prevent the activation of the filamentation program during pheromone response. How Fus3 prevents the crossactivation is not clear. Here we show that Tec1, a cofactor of Ste12 for the expression of filamentation genes, is rapidly degraded during pheromone response. Fus3 but not Kss1 induces Tec1 ubiquination and degradation through the SCFCdc4 ubiquitin ligase. T273 in a predicted high-affinity Cdc4 binding motif is phosphorylated by Fus3 both in vitro and in vivo. Tec1T273V blocks Tec1 ubiquitination and degradation and allows the induction of filamentation genes in response to pheromone. Thus, Fus3 inhibits filamentous growth during mating by degrading Tec1.


Molecular and Cellular Biology | 1999

A G1 Cyclin Is Necessary for Maintenance of Filamentous Growth in Candida albicans

Jonathan D. J. Loeb; Marisa Sepulveda-Becerra; Idit Hazan; Haoping Liu

ABSTRACT Candida albicans undergoes a dramatic morphological transition in response to various growth conditions. This ability to switch from a yeast form to a hyphal form is required for its pathogenicity. The intractability of Candida to traditional genetic approaches has hampered the study of the molecular mechanism governing this developmental switch. Our approach is to use the more genetically tractable yeast Saccharomyces cerevisiae to yield clues about the molecular control of filamentation for further studies in Candida. G1 cyclins Cln1 and Cln2 have been implicated in the control of morphogenesis in S. cerevisiae. We show that C. albicans CLN1(CaCLN1) has the same cell cycle-specific expression pattern as CLN1 and CLN2 of S. cerevisiae. To investigate whether G1 cyclins are similarly involved in the regulation of cell morphogenesis during the yeast-to-hypha transition of C. albicans, we mutatedCaCLN1. Cacln1/Cacln1 cells were found to be slower than wild-type cells in cell cycle progression. TheCacln1/Cacln1 mutants were also defective in hyphal colony formation on several solid media. Furthermore, while mutant strains developed germ tubes under several hypha-inducing conditions, they were unable to maintain the hyphal growth mode in a synthetic hypha-inducing liquid medium and were deficient in the expression of hypha-specific genes in this medium. Our results suggest that CaCln1 may coordinately regulate hyphal development with signal transduction pathways in response to various environmental cues.


PLOS Biology | 2011

Hyphal Development in Candida albicans Requires Two Temporally Linked Changes in Promoter Chromatin for Initiation and Maintenance

Yang Lu; Chang Su; Allen Wang; Haoping Liu

Phenotypic plasticity is common in development. For Candida albicans, the most common cause of invasive fungal infections in humans, morphological plasticity is its defining feature and is critical for its pathogenesis. Unlike other fungal pathogens that exist primarily in either yeast or hyphal forms, C. albicans is able to switch reversibly between yeast and hyphal growth forms in response to environmental cues. Although many regulators have been found involved in hyphal development, the mechanisms of regulating hyphal development and plasticity of dimorphism remain unclear. Here we show that hyphal development involves two sequential regulations of the promoter chromatin of hypha-specific genes. Initiation requires a rapid but temporary disappearance of the Nrg1 transcriptional repressor of hyphal morphogenesis via activation of the cAMP-PKA pathway. Maintenance requires promoter recruitment of Hda1 histone deacetylase under reduced Tor1 (target of rapamycin) signaling. Hda1 deacetylates a subunit of the NuA4 histone acetyltransferase module, leading to eviction of the NuA4 acetyltransferase module and blockage of Nrg1 access to promoters of hypha-specific genes. Promoter recruitment of Hda1 for hyphal maintenance happens only during the period when Nrg1 is gone. The sequential regulation of hyphal development by the activation of the cAMP-PKA pathway and reduced Tor1 signaling provides a molecular mechanism for plasticity of dimorphism and how C. albicans adapts to the varied host environments in pathogenesis. Such temporally linked regulation of promoter chromatin by different signaling pathways provides a unique mechanism for integrating multiple signals during development and cell fate specification.


Molecular and Cellular Biology | 2001

The basic helix-loop-helix transcription factor Cph2 regulates hyphal development in Candida albicans partly via TEC1.

Shelley Lane; Song Zhou; Ting Pan; Qian Dai; Haoping Liu

ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.


Molecular and Cellular Biology | 2006

Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae

Song Chou; Shelley Lane; Haoping Liu

ABSTRACT The Saccharomyces cerevisiae transcription factor Ste12 controls two distinct developmental programs of mating and filamentation. Ste12 activity is regulated by Fus3 and Kss1 mitogen-activated protein kinases through two Ste12 inhibitors, Dig1 and Dig2. Mating genes are regulated by Ste12 through Ste12 binding sites (pheromone response elements [PREs]), whereas filamentation genes are supposedly regulated by the cooperative binding of Ste12 and Tec1 on a PRE adjacent to a Tec1-binding site (TCS), termed filamentous responsive element (FRE). However, most filamentation genes do not contain an FRE; instead, they all have a TCS. By immunoprecipitation, we show that Ste12 forms two distinct complexes, Ste12/Dig1/Dig2 and Tec1/Ste12/Dig1, both in vivo and in vitro. The two complexes are formed by the competitive binding of Tec1 and Dig2 with Ste12, as Tec1 can compete off Dig2 from Ste12 in vitro and in vivo. In the Tec1/Ste12/Dig1 complex, Tec1 binds to the N terminus of Ste12 and to Dig1 indirectly through Ste12. Tec1 has low basal activity, and its transcriptional activation is provided by the associated Ste12, which is under Dig1 inhibition. Filamentation genes are bound by the Tec1/Ste12/Dig1 complex, whereas mating genes are occupied by mostly Ste12/Dig1/Dig2 with some Tec1/Ste12/Dig1. We suggest that Tec1 tethers Ste12 to TCS elements upstream of filamentation genes and defines the filamentation genes as a subset of Ste12-regulated genes.


International Journal of Medical Microbiology | 2002

Co-regulation of pathogenesis with dimorphism and phenotypic switching in Candida albicans, a commensal and a pathogen

Haoping Liu

Candida albicans, a common fungal pathogen of humans, can colonize in many diverse environments of the host and convert between a harmless commensal and a pathogen. Recent advances indicate that C. albicans uses a common set of conserved pathways to regulate dimorphism, mating and phenotypic switching. Major pathways known to regulate dimorphism include a mitogen-activated protein (MAP) kinase pathway through Cph1, the cAMP-dependent protein kinase pathway via Efg1, and Tup1-mediated repression through Rfg1 and Nrg1. The Cph1-mediated MAP kinase pathway is critical for the mating process, while all three pathways are implicated in the regulation of white-opaque switching. All these developmental pathways regulate the expression of hypha-specific and/or phase-specific genes. A high proportion of hypha-specific genes and phase-specific genes encode proteins that contribute directly or indirectly to pathogenesis and virulence of C. albicans. Therefore, virulence genes are co-regulated with cell morphogenesis. This supports a previous notion that the unique aspects of C. albicans commensalism and pathogenesis may lie in the developmental programs of dimorphism and phenotypic switching.

Collaboration


Dive into the Haoping Liu's collaboration.

Top Co-Authors

Avatar

Shelley Lane

University of California

View shared research outputs
Top Co-Authors

Avatar

Yang Lu

University of California

View shared research outputs
Top Co-Authors

Avatar

Chang Su

University of California

View shared research outputs
Top Co-Authors

Avatar

Jiangye Chen

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Idit Hazan

University of California

View shared research outputs
Top Co-Authors

Avatar

Song Chou

University of California

View shared research outputs
Top Co-Authors

Avatar

Allen Wang

University of California

View shared research outputs
Top Co-Authors

Avatar

Fuqiang Wang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge