Shelley Lane
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shelley Lane.
Molecular Microbiology | 2002
Jiangye Chen; Jing Chen; Shelley Lane; Haoping Liu
Candida albicans had been thought to lack a mating process until the recent discovery of a mating type‐like locus and mating between MTLa and MTLα strains. To elucidate the molecular mechanisms that regulate mating in C. albicans, we examined the function of Cph1 and its upstream mitogen‐activated protein (MAP) kinase pathway in mating, as they are homologues of the pheromone‐responsive MAP kinase pathway in Saccharomyces cerevisiae. We found that overexpressing CPH1 in MTLa, but not in MTLa/α strains, induced the transcription of orthologues of S. cerevisiae pheromone‐induced genes and also increased mating efficiency. Furthermore, cph1 and hst7 mutants were completely defective in mating, and cst20 and cek1 mutants showed reduced mating efficiency, as in S. cerevisiae. The partial mating defect in cek1 results from the presence of a functionally redundant MAP kinase, Cek2. CEK2 complemented the mating defect of a fus3 kss1 mutant of S. cerevisiae and was expressed only in MTLa or MTLα, but not in MTLa/α cell types. Moreover, a cek1 cek2 double mutant was completely defective in mating. Our data suggest that the conserved MAP kinase pathway regulates mating in C. albicans. We also observed that C. albicans mating efficiency was greatly affected by medium composition, indicating the potential involvement of nutrient‐sensing pathways in mating in addition to the MAP kinase pathway.
Molecular and Cellular Biology | 2001
Shelley Lane; Song Zhou; Ting Pan; Qian Dai; Haoping Liu
ABSTRACT Candida albicans undergoes a morphogenetic switch from budding yeast to hyphal growth form in response to a variety of stimuli and growth conditions. Multiple signaling pathways, including a Cph1-mediated mitogen-activated protein kinase pathway and an Efg1-mediated cyclic AMP/protein kinase A pathway, regulate the transition. Here we report the identification of a basic helix-loop-helix transcription factor of the Myc subfamily (Cph2) by its ability to promote pseudohyphal growth inSaccharomyces cerevisiae. Like sterol response element binding protein 1, Cph2 has a Tyr instead of a conserved Arg in the basic DNA binding region. Cph2 regulates hyphal development in C. albicans, ascph2/cph2 mutant strains show medium-specific impairment in hyphal development and in the induction of hypha-specific genes. However, many hypha-specific genes do not have potential Cph2 binding sites in their upstream regions. Interestingly, upstream sequences of all known hypha-specific genes are found to contain potential binding sites for Tec1, a regulator of hyphal development. Northern analysis shows that TEC1 transcription is highest in the medium in which cph2/cph2 displays a defect in hyphal development, and Cph2 is necessary for this transcriptional induction of TEC1. In vitro gel mobility shift experiments show that Cph2 directly binds to the two sterol regulatory element 1-like elements upstream of TEC1. Furthermore, the ectopic expression of TEC1 suppresses the defect ofcph2/cph2 in hyphal development. Therefore, the function of Cph2 in hyphal transcription is mediated, in part, through Tec1. We further show that this function of Cph2 is independent of the Cph1- and Efg1-mediated pathways.
Molecular and Cellular Biology | 2006
Song Chou; Shelley Lane; Haoping Liu
ABSTRACT The Saccharomyces cerevisiae transcription factor Ste12 controls two distinct developmental programs of mating and filamentation. Ste12 activity is regulated by Fus3 and Kss1 mitogen-activated protein kinases through two Ste12 inhibitors, Dig1 and Dig2. Mating genes are regulated by Ste12 through Ste12 binding sites (pheromone response elements [PREs]), whereas filamentation genes are supposedly regulated by the cooperative binding of Ste12 and Tec1 on a PRE adjacent to a Tec1-binding site (TCS), termed filamentous responsive element (FRE). However, most filamentation genes do not contain an FRE; instead, they all have a TCS. By immunoprecipitation, we show that Ste12 forms two distinct complexes, Ste12/Dig1/Dig2 and Tec1/Ste12/Dig1, both in vivo and in vitro. The two complexes are formed by the competitive binding of Tec1 and Dig2 with Ste12, as Tec1 can compete off Dig2 from Ste12 in vitro and in vivo. In the Tec1/Ste12/Dig1 complex, Tec1 binds to the N terminus of Ste12 and to Dig1 indirectly through Ste12. Tec1 has low basal activity, and its transcriptional activation is provided by the associated Ste12, which is under Dig1 inhibition. Filamentation genes are bound by the Tec1/Ste12/Dig1 complex, whereas mating genes are occupied by mostly Ste12/Dig1/Dig2 with some Tec1/Ste12/Dig1. We suggest that Tec1 tethers Ste12 to TCS elements upstream of filamentation genes and defines the filamentation genes as a subset of Ste12-regulated genes.
Molecular and Cellular Biology | 2009
Allen Wang; Prashna Pala Raniga; Shelley Lane; Yang Lu; Haoping Liu
ABSTRACT Cell chain formation is a characteristic of filamentous growth in fungi. How it is regulated developmentally in multimorphic fungi is not known. In Candida albicans, degradation of septa during yeast growth is accomplished by enzymes encoded by Ace2 activated genes expressed in G1. We found that phosphorylation of a conserved developmental regulator, Efg1, by the cyclin-dependent kinase Cdc28-Hgc1 (hypha-specific G1 cyclin) downregulates Ace2 target genes during hyphal growth in G1. A strain containing a threonine-to-alanine mutation at a conserved Cdc28 phosphorylation site of Efg1 displays a loss of hypha-specific repression of these genes and impaired cell chain formation, mimicking the hgc1 deletion, whereas a strain containing the threonine to aspartic acid mutation leads to a downregulation of these genes and cell chain formation during yeast growth. Furthermore, the phosphomimic mutation can suppress cell separation defects of hgc1. Efg1 also displays preferential association with Ace2 target gene promoters during hyphal growth. We show that convergent regulation of Ace2 and Efg1 defines the transcriptional program of cell chain formation.
Eukaryotic Cell | 2007
Allen Wang; Shelley Lane; Zhen Tian; Amir Sharon; Idit Hazan; Haoping Liu
ABSTRACT The human fungal pathogen Candida albicans can undergo a morphological transition from a unicellular yeast growth form to a multicellular hyphal growth form. During hyphal growth, cell division is asymmetric. Only the apical cell divides, whereas subapical cells remain in G1, and cell surface growth is highly restricted to the tip of the apical cell. Hgc1, a hypha-specific, G1 cyclin-like protein, is essential for hyphal development. Here, we report, using indirect immunofluorescence, that Hgc1 is preferentially localized to the dividing apical cells of hyphae. Hgc1 protein is rapidly degraded in a cell cycle-independent manner, and the protein turnover likely occurs in both the apical and the subapical cells of hyphae. In addition to rapid protein turnover, the HGC1 transcript is also dynamically regulated during cell cycle progression in hyphal growth. It is induced upon germ tube formation in early G1; the transcript level is reduced during the G1/S transition and peaks again around the G2/M phase in the subsequent cell cycles. Transcription from the HGC1 promoter is essential for its apical cell localization, as Hgc1 no longer exhibits preferential apical localization when expressed under the MAL2 promoter. Using fluorescence in situ hybridization, the HGC1 transcript is detected only in the apical cells of hyphae, suggesting that HGC1 is transcribed in the apical cell. Therefore, the preferential localization of Hgc1 to the apical cells of hyphae results from the dynamic temporal and spatial control of HGC1 expression.
ChemMedChem | 2015
Ilandari Dewage Udara Anulal Premachandra; Kevin A. Scott; Chengtian Shen; Fuqiang Wang; Shelley Lane; Haoping Liu; David L. Van Vranken
A spiroindolinone, (1S,3R,3aR,6aS)‐1‐benzyl‐6′‐chloro‐5‐(4‐fluorophenyl)‐7′‐methylspiro[1,2,3a,6a‐tetrahydropyrrolo[3,4‐c]pyrrole‐3,3′‐1H‐indole]‐2′,4,6‐trione, was previously reported to enhance the antifungal effect of fluconazole against Candida albicans. A diastereomer of this compound was synthesized, along with various analogues. Many of the compounds were shown to enhance the antifungal effect of fluconazole against C. albicans, some with exquisite potency. One spirocyclic piperazine derivative, which we have named synazo‐1, was found to enhance the effect of fluconazole with an EC50 value of 300 pM against a susceptible strain of C. albicans and going as low as 2 nM against some resistant strains. Synazo‐1 exhibits true synergy with fluconazole, with an FIC index below 0.5 in the strains tested. Synazo‐1 exhibited low toxicity in mammalian cells relative to the concentrations required for antifungal synergy.
Eukaryotic Cell | 2015
Shelley Lane; Pietro Di Lena; Kati Tormanen; Pierre Baldi; Haoping Liu
ABSTRACT Candida albicans is associated with humans as both a harmless commensal organism and a pathogen. Cph2 is a transcription factor whose DNA binding domain is similar to that of mammalian sterol response element binding proteins (SREBPs). SREBPs are master regulators of cellular cholesterol levels and are highly conserved from fungi to mammals. However, ergosterol biosynthesis is regulated by the zinc finger transcription factor Upc2 in C. albicans and several other yeasts. Cph2 is not necessary for ergosterol biosynthesis but is important for colonization in the murine gastrointestinal (GI) tract. Here we demonstrate that Cph2 is a membrane-associated transcription factor that is processed to release the N-terminal DNA binding domain like SREBPs, but its cleavage is not regulated by cellular levels of ergosterol or oxygen. Chromatin immunoprecipitation sequencing (ChIP-seq) shows that Cph2 binds to the promoters of HMS1 and other components of the regulatory circuit for GI tract colonization. In addition, 50% of Cph2 targets are also bound by Hms1 and other factors of the regulatory circuit. Several common targets function at the head of the glycolysis pathway. Thus, Cph2 is an integral part of the regulatory circuit for GI colonization that regulates glycolytic flux. Transcriptome sequencing (RNA-seq) shows a significant overlap in genes differentially regulated by Cph2 and hypoxia, and Cph2 is important for optimal expression of some hypoxia-responsive genes in glycolysis and the citric acid cycle. We suggest that Cph2 and Upc2 regulate hypoxia-responsive expression in different pathways, consistent with a synthetic lethal defect of the cph2 upc2 double mutant in hypoxia.
SLAS DISCOVERY: Advancing Life Sciences R&D | 2018
Caitlin N. Suire; Shelley Lane; Malcolm A. Leissring
Glucagon is a vital peptide hormone involved in the regulation of blood sugar under fasting conditions. Although the processes underlying glucagon production and secretion are well understood, far less is known about its degradation, which could conceivably be manipulated pharmacologically for therapeutic benefit. We describe here the development of novel assays for glucagon degradation, based on fluoresceinated and biotinylated glucagon (FBG) labeled at the N- and C-termini, respectively. Proteolysis at any peptide bond within FBG separates the fluorescent label from the biotin tag, which can be quantified in multiple ways. In one method requiring no specialized equipment, intact FBG is separated from the cleaved fluoresceinated fragments using NeutrAvidin agarose beads, and hydrolysis is quantified by fluorescence. In an alternative, high-throughput-compatible method, the degree of hydrolysis is quantified using fluorescence polarization after addition of unmodified avidin. Using a known glucagon protease, we confirm that FBG is cleaved at similar sites as unmodified glucagon and use both methods to quantify the kinetic parameters of FBG degradation. We show further that the fluorescence polarization-based assay performs exceptionally well (Z’-factor values >0.80) in a high-throughput, mix-and-measure format.
Journal of Biological Chemistry | 2001
Shelley Lane; Charlie Birse; Song Zhou; Robert Matson; Haoping Liu
Molecular Biology of the Cell | 2005
Fang Cao; Shelley Lane; Prashna Pala Raniga; Yang Lu; Zhou Zhou; Karalyn Ramon; Jiangye Chen; Haoping Liu