Harald Carlsen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Carlsen.
Journal of Immunology | 2009
Arnaud Didierlaurent; Sandra Morel; Laurence Lockman; Sandra L. Giannini; Michel Bisteau; Harald Carlsen; Anders Kielland; Olivier Vosters; Nathalie Vanderheyde; Francesca Schiavetti; Daniel Larocque; Marcelle Van Mechelen; Nathalie Garçon
Adjuvant System 04 (AS04) combines the TLR4 agonist MPL (3-O-desacyl-4′-monophosphoryl lipid A) and aluminum salt. It is a new generation TLR-based adjuvant licensed for use in human vaccines. One of these vaccines, the human papillomavirus (HPV) vaccine Cervarix, is used in this study to elucidate the mechanism of action of AS04 in human cells and in mice. The adjuvant activity of AS04 was found to be strictly dependent on AS04 and the HPV Ags being injected at the same i.m. site within 24 h of each other. During this period, AS04 transiently induced local NF-κB activity and cytokine production. This led to an increased number of activated Ag-loaded dendritic cells and monocytes in the lymph node draining the injection site, which further increased the activation of Ag-specific T cells. AS04 was also found to directly stimulate those APCs in vitro but not directly stimulate CD4+ T or B lymphocytes. These AS04-induced innate responses were primarily due to MPL. Aluminum salt appeared not to synergize with or inhibit MPL, but rather it prolonged the cytokine responses to MPL at the injection site. Altogether these results support a model in which the addition of MPL to aluminum salt enhances the vaccine response by rapidly triggering a local cytokine response leading to an optimal activation of APCs. The transient and confined nature of these responses provides further supporting evidence for the favorable safety profile of AS04 adjuvanted vaccines.
The American Journal of Clinical Nutrition | 2005
Jan Ø. Moskaug; Harald Carlsen; Mari C. W. Myhrstad; Rune Blomhoff
Polyphenols in food plants are a versatile group of phytochemicals with many potentially beneficial activities in terms of disease prevention. In vitro cell culture experiments have shown that polyphenols possess antioxidant properties, and it is thought that these activities account for disease-preventing effects of diets high in polyphenols. However, polyphenols may be regarded as xenobiotics by animal cells and are to some extent treated as such, ie, they interact with phase I and phase II enzyme systems. We recently showed that dietary plant polyphenols, namely, the flavonoids, modulate expression of an important enzyme in both cellular antioxidant defenses and detoxification of xenobiotics, ie, gamma-glutamylcysteine synthetase. This enzyme is rate limiting in the synthesis of the most important endogenous antioxidant in cells, glutathione. We showed in vitro that flavonoids increase expression of gamma-glutamylcysteine synthetase and, by using a unique transgenic reporter mouse strain, we showed increased expression in vivo, with a concomitant increase in the intracellular glutathione concentrations in muscles. Because glutathione is important in redox regulation of transcription factors and enzymes for signal transduction, our results suggest that polyphenol-mediated regulation of glutathione alters cellular processes. Evidently, glutathione is important in many diseases, and regulation of intracellular glutathione concentrations may be one mechanism by which diet influences disease development. The aim of this review is to discuss some of the mechanisms involved in the glutathione-mediated, endogenous, cellular antioxidant defense system, how its possible modulation by dietary polyphenols such as flavonoids may influence disease development, and how it can be studied with in vivo imaging.
Free Radical Biology and Medicine | 2002
Mari C. W. Myhrstad; Harald Carlsen; Olov Nordström; Rune Blomhoff; Jan Øivind Moskaug
Fruits and vegetables protect against cancer by so far not well-characterized mechanisms. One likely explanation for this effect is that dietary plants contain substances able to control basic cellular processes such as the endogenous defense against oxidative stress. Oxidative stress is pivotal in many pathological processes and reduced oxidative stress is implicated in prevention of disease. Our results demonstrate that extract from onion and various flavonoids induce the cellular antioxidant system. Onion extract and quercetin were able to increase the intracellular concentration of glutathione by approximately 50%. Using a reporter construct where reporter expression is driven by the gamma-glutamylcysteine synthetase (GCS) heavy subunit (GCS(h)) promoter we show that onion extract, quercetin, kaempferol, and apigenin increased reporter gene activity, while a fourth flavonoid, myricetin and sugar conjugates of quercetin were unable to increase reporter expression. Quercetin was also able to induce a distal part of the GCS(h) promoter containing only two antioxidant-response/electrophile-response elements (ARE/EpRE). Our data strongly suggest that flavonoids are important in the regulation of the intracellular glutathione levels. This effect may be exerted in part through GCS gene regulation, and may also contribute to the disease-preventing effect of fruits and vegetables.
Journal of Immunology | 2002
Harald Carlsen; Jan Ø. Moskaug; Sigurd H. Fromm; Rune Blomhoff
A wide range of human disorders involves inappropriate regulation of NF-κB, including cancers and numerous inflammatory conditions. Toward our goal to define mechanisms through which NF-κB leads to the development of disease, we have developed transgenic mice that express luciferase under the control of NF-κB, enabling real-time in vivo imaging of NF-κB activity in intact animals. We show that in the absence of extrinsic stimulation, strong luminescence is evident in lymph nodes in the neck region, thymus, and Peyer’s patches. Treating mice with TNF-α, IL-1α, or LPS increased the luminescence in a tissue-specific manner, with the strongest activity observed in skin, lungs, spleen, Peyer’s patches, and the wall of the small intestine. Liver, kidney, heart, muscle, and adipose tissue displayed less intense activities. Also, exposure of skin to a low dose of UV radiation increased luminescence in the exposed areas. Furthermore, induction of chronic inflammation resembling rheumatoid arthritis produced strong NF-κB activity in the affected joints, as revealed by in vivo imaging. Thus, we have developed a versatile model for monitoring NF-κB activation in vivo.
Journal of Immunology | 2004
Arnaud Didierlaurent; Isabel Ferrero; Luc A. Otten; Bertrand Dubois; Monique Reinhardt; Harald Carlsen; Rune Blomhoff; Shikuo Akira; Jean-Pierre Kraehenbuhl; Jean-Claude Sirard
Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4+ T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-κB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.
Molecular Aspects of Medicine | 2002
Malcolm J. Jackson; Sergio Papa; Juan P. Bolaños; Richard Bruckdorfer; Harald Carlsen; Ruan Elliott; Jacoba Flier; Helen R. Griffiths; Simon Heales; Birgit Holst; Michele Lorusso; Elizabeth K. Lund; Jan Øivind Moskaug; Ulrich Moser; Marco Di Paola; M. Cristina Polidori; Anna Signorile; Wilhelm Stahl; José Viña-Ribes; Siân B. Astley
Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs
Arteriosclerosis, Thrombosis, and Vascular Biology | 2009
Mustafa Zakkar; Kim Van der Heiden; Le Anh Luong; Hera Chaudhury; Simon Cuhlmann; Shahir S. Hamdulay; Rob Krams; Indika Edirisinghe; Irfan Rahman; Harald Carlsen; Dorian O. Haskard; Justin C. Mason; Paul C. Evans
Objective—Proinflammatory mediators influence atherosclerosis by inducing adhesion molecules (eg, VCAM-1) on endothelial cells (ECs) via signaling intermediaries including p38 MAP kinase. Regions of arteries exposed to high shear stress are protected from inflammation and atherosclerosis, whereas low-shear regions are susceptible. Here we investigated whether the transcription factor Nrf2 regulates EC activation in arteries. Methods and Results—En face staining revealed that Nrf2 was activated in ECs at an atheroprotected region of the murine aorta where it negatively regulated p38–VCAM-1 signaling, but was expressed in an inactive form in ECs at an atherosusceptible site. Treatment with sulforaphane, a dietary antioxidant, activated Nrf2 and suppressed p38–VCAM-1 signaling at the susceptible site in wild-type but not Nrf2−/− animals, indicating that it suppresses EC activation via Nrf2. Studies of cultured ECs revealed that Nrf2 inactivates p38 by suppressing an upstream activator MKK3/6 and by enhancing the activity of the negative regulator MKP-1. Conclusions—Nrf2 prevents ECs at the atheroprotected site from exhibiting a proinflammatory state via the suppression of p38–VCAM-1 signaling. Pharmacological activation of Nrf2 reduces EC activation at atherosusceptible sites and may provide a novel therapeutic strategy to prevent or reduce atherosclerosis.
The FASEB Journal | 2007
Jason Partridge; Harald Carlsen; Karine Enesa; Hera Chaudhury; Mustafa Zakkar; Le Luong; Anne R. Kinderlerer; Mike Johns; Rune Blomhoff; Justin C. Mason; Dorian O. Haskard; Paul C. Evans
Regions of the arterial tree exposed to laminar flow, which exerts high shear stress, are protected from inflammation, endothelial cell (EC) death and atherosclerosis. TNFα activates NF‐κB transcription factors, which potentially exert dual functions by inducing both proinflammatory and cytoprotective transcripts. We assessed whether laminar shear stress protects EC by modulating NF‐κB function. Human umbilical vein EC (HUVEC) were cultured under shear stress (12 dynes/cm2 for 16 h) using a parallel‐plate flow chamber or were maintained in static conditions. Comparative real‐time PCR revealed that preshearing significantly alters transcriptional responses to TNFα by enhancing the expression of cytoprotective molecules (Bcl‐2, MnSOD, GADD45β, A1) and suppressing proin‐flammatory transcripts (E‐selectin, VCAM‐1, IL‐8). We demonstrated using assays of nuclear localization, NF‐κB subunit phosphorylation, DNA‐binding, and transcriptional activity that NF‐κB is activated by TNFα in presheared HUVEC. Furthermore, a specific inhibitor revealed that NF‐κB is essential for the induction of cytoprotective transcripts in presheared EC. Finally, we observed that NF‐κB can be activated in vascular endo‐thelium exposed to laminar shear stress in NF‐κB‐luciferase reporter mice, thus validating our cell culture experiments. We conclude that shear stress primes EC for enhanced NF‐κB‐dependent cytoprotective responsiveness while attenuating proinflammatory activation. Thus modulation of NF‐κB function may underlie the atheroprotective effects of laminar shear stress.—Partridge, J., Carlsen, H., Enesa, K., Chaudhury, H., Zakkar, M., Luong, L., Kinderlerer, A., Johns, M., Blomhoff, R., Mason, J. C., Haskard, D. O., Evans, P. C. Laminar shear stress acts as a switch to regulate divergent functions of NF‐κB in endothelial cells. FASEB J. 21, 3553–3561 (2007)
Mechanisms of Ageing and Development | 2004
Jan Øivind Moskaug; Harald Carlsen; Mari C. W. Myhrstad; Rune Blomhoff
The human diet contains several thousands of organic plant molecules (i.e. phytochemicals), many of which have significant bioactivities. The specific physiological effects of these compounds are impossible to predict from in vitro studies using cell cultures and cell-free model systems. Nutrigenomics, which may be defined as the application of genomic tools to study the integrated effects of nutrients on gene regulation, however, holds great promise in increasing the understanding of how nutrients affect molecular events in an organism. Quercetin, a phytochemical belonging to the flavonoids, has antioxidant activities, inhibit protein kinases, inhibit DNA topoisomerases and regulate gene expression. The aim of the present review is to describe some of the many effects of quercetin, and how molecular imaging using transgenic reporter mice may serve as a tool to study the integrated influence of quercetin and other dietary phytochemicals on gene expression in vivo. We are using the bioluminescence emitted from firefly luciferase as the reporter since light originating from the inside of a cell or organism can be detected externally in an intact living organism. Molecular imaging using reporter models is therefore a unique technology to study the integrated effects of environmental insults and dietary substances on the influence of gene expression in disease development. We utilize these in vivo models to elucidate the role of various flavonoids, such as quercetin, for modulating gene expression related to oxidative stress and the antioxidant defence system.
Free Radical Biology and Medicine | 2009
Anders Kielland; Thomas Blom; Kutty Selva Nandakumar; Rikard Holmdahl; Rune Blomhoff; Harald Carlsen
Production of reactive oxygen and nitrogen species (ROS/RNS) is an important part of the inflammatory response, but prolonged elevated levels of ROS/RNS as under chronic inflammation can contribute to the development of disease. Monitoring ROS/RNS in living animals is challenging due to the rapid turnover of ROS/RNS and the limited sensitivity and specificity of ROS/RNS probes. We have explored the use of the chemiluminescent probe L-012 for noninvasive imaging of ROS/RNS production during inflammation in living mice. Various inflammatory conditions were induced, and L-012-dependent luminescence was recorded with an ultrasensitive CCD camera. Strong luminescent signals were observed from different regions of the body corresponding to inflammation. The signal was reduced by administration of the SOD mimetic tempol, the NADPH oxidase inhibitor apocynin, and the inhibitor of nitric oxide synthesis L-NAME, signifying the requirement for the presence of ROS/RNS. Additionally, the L-012 signal was abolished in mice with a mutation in the Ncf1 gene, encoding a protein in the NADPH oxidase complex 2, which generates ROS/RNS during inflammation. In conclusion, L-012 is well distributed in the mouse body and mediates a strong ROS/RNS-dependent luminescent signal in vivo and is useful for monitoring the development and regulation of inflammation in living organisms.
Collaboration
Dive into the Harald Carlsen's collaboration.
Oslo and Akershus University College of Applied Sciences
View shared research outputs