Mari C. W. Myhrstad
Oslo and Akershus University College of Applied Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mari C. W. Myhrstad.
The American Journal of Clinical Nutrition | 2005
Jan Ø. Moskaug; Harald Carlsen; Mari C. W. Myhrstad; Rune Blomhoff
Polyphenols in food plants are a versatile group of phytochemicals with many potentially beneficial activities in terms of disease prevention. In vitro cell culture experiments have shown that polyphenols possess antioxidant properties, and it is thought that these activities account for disease-preventing effects of diets high in polyphenols. However, polyphenols may be regarded as xenobiotics by animal cells and are to some extent treated as such, ie, they interact with phase I and phase II enzyme systems. We recently showed that dietary plant polyphenols, namely, the flavonoids, modulate expression of an important enzyme in both cellular antioxidant defenses and detoxification of xenobiotics, ie, gamma-glutamylcysteine synthetase. This enzyme is rate limiting in the synthesis of the most important endogenous antioxidant in cells, glutathione. We showed in vitro that flavonoids increase expression of gamma-glutamylcysteine synthetase and, by using a unique transgenic reporter mouse strain, we showed increased expression in vivo, with a concomitant increase in the intracellular glutathione concentrations in muscles. Because glutathione is important in redox regulation of transcription factors and enzymes for signal transduction, our results suggest that polyphenol-mediated regulation of glutathione alters cellular processes. Evidently, glutathione is important in many diseases, and regulation of intracellular glutathione concentrations may be one mechanism by which diet influences disease development. The aim of this review is to discuss some of the mechanisms involved in the glutathione-mediated, endogenous, cellular antioxidant defense system, how its possible modulation by dietary polyphenols such as flavonoids may influence disease development, and how it can be studied with in vivo imaging.
Free Radical Biology and Medicine | 2002
Mari C. W. Myhrstad; Harald Carlsen; Olov Nordström; Rune Blomhoff; Jan Øivind Moskaug
Fruits and vegetables protect against cancer by so far not well-characterized mechanisms. One likely explanation for this effect is that dietary plants contain substances able to control basic cellular processes such as the endogenous defense against oxidative stress. Oxidative stress is pivotal in many pathological processes and reduced oxidative stress is implicated in prevention of disease. Our results demonstrate that extract from onion and various flavonoids induce the cellular antioxidant system. Onion extract and quercetin were able to increase the intracellular concentration of glutathione by approximately 50%. Using a reporter construct where reporter expression is driven by the gamma-glutamylcysteine synthetase (GCS) heavy subunit (GCS(h)) promoter we show that onion extract, quercetin, kaempferol, and apigenin increased reporter gene activity, while a fourth flavonoid, myricetin and sugar conjugates of quercetin were unable to increase reporter expression. Quercetin was also able to induce a distal part of the GCS(h) promoter containing only two antioxidant-response/electrophile-response elements (ARE/EpRE). Our data strongly suggest that flavonoids are important in the regulation of the intracellular glutathione levels. This effect may be exerted in part through GCS gene regulation, and may also contribute to the disease-preventing effect of fruits and vegetables.
Mechanisms of Ageing and Development | 2004
Jan Øivind Moskaug; Harald Carlsen; Mari C. W. Myhrstad; Rune Blomhoff
The human diet contains several thousands of organic plant molecules (i.e. phytochemicals), many of which have significant bioactivities. The specific physiological effects of these compounds are impossible to predict from in vitro studies using cell cultures and cell-free model systems. Nutrigenomics, which may be defined as the application of genomic tools to study the integrated effects of nutrients on gene regulation, however, holds great promise in increasing the understanding of how nutrients affect molecular events in an organism. Quercetin, a phytochemical belonging to the flavonoids, has antioxidant activities, inhibit protein kinases, inhibit DNA topoisomerases and regulate gene expression. The aim of the present review is to describe some of the many effects of quercetin, and how molecular imaging using transgenic reporter mice may serve as a tool to study the integrated influence of quercetin and other dietary phytochemicals on gene expression in vivo. We are using the bioluminescence emitted from firefly luciferase as the reporter since light originating from the inside of a cell or organism can be detected externally in an intact living organism. Molecular imaging using reporter models is therefore a unique technology to study the integrated effects of environmental insults and dietary substances on the influence of gene expression in disease development. We utilize these in vivo models to elucidate the role of various flavonoids, such as quercetin, for modulating gene expression related to oxidative stress and the antioxidant defence system.
Leukemia | 1998
Hanne S. Finstad; Mari C. W. Myhrstad; Hilde Heimli; Jon Lømo; Heidi Kiil Blomhoff; Svein Olav Kolset; C A Drevon
Polyunsaturated fatty acids (PUFA) may reduce cell multiplication in cultures of normal, as well as transformed, white blood cells. We assessed the sensitivity of 14 different leukemia cell lines to PUFA by measuring cell number after 3 days of incubation. Ten of the examined cell lines were sensitive to 30, 60 and/or 120 μM of arachidonic, eicosapentaenoic and docosahexaenoic acid, whereas four cell lines were resistant. The sensitivity to PUFA was not associated with any particular cell lineage, clinical origin or specific mRNA pattern of bcl-2 and c-myc. Effects on cell viability were assessed by studying cell membrane integrity, DNA fragmentation and cell morphology. The sensitive cell lines Raji and Ramos died by necrosis and apoptosis, respectively, during incubation with eicosapentaenoic acid, whereas the viability of the resistant U-698 cell line was unaffected. The effects of EPA on Raji cells, was counteracted by vitamin E, indicating that lipid peroxidation was involved. However, apoptosis induced by eicosa- pentaenoic acid in Ramos cells, was unaffected by vitamin E, as well as eicosanoid synthesis inhibitors. In conclusion, our results indicate that a majority of leukemia cell lines are sensitive to PUFA. This sensitivity may be caused by induction of apoptosis or necrosis by very long-chain polyunsaturated fatty acids.
Molecular Nutrition & Food Research | 2011
Trude R. Balstad; Harald Carlsen; Mari C. W. Myhrstad; Marit Kolberg; Hanne Reiersen; Lene Gilen; Kanae Ebihara; Ingvild Paur; Rune Blomhoff
SCOPE Cytoprotective gene products, e.g. phase II - and antioxidant enzymes, are important in cellular redox homeostasis. A common feature of these genes is binding sites for transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), named electrophile response elements (EpREs) within their promoters. METHODS AND RESULTS To identify dietary bioactive compounds and foods with Nrf2/EpRE inducing properties in an intact organism, we utilized transgenic mice encoding luciferase under control of EpRE from the thioredoxin promoter. We found that 18 of 31 phytochemicals and 10 of 14 dietary plant extracts induced EpRE activity in liver HepG2 cells. Surprisingly, some dietary plant extracts showed profound inducing capability as compared to pure compounds indicating combinatorial effects of compounds found in whole foods. Furthermore, intraperitoneal injections of carnosol, curcumin and tert benzohydroquinine induced EpRE-dependent promoter activity in transgenic mice. In further experiments with curcumin, we found highly induced EpRE activity in intestine, liver, kidney and spleen. Finally, a combination extract made of coffee, thyme, broccoli, rosemary, turmeric and red onion fed orally, induced EpRE mediated luciferase in lung and adipose tissue. CONCLUSION These results show that plant-based foods contain compounds that can be absorbed and induce the antioxidant defence in a living organism in an organ-specific manner.
British Journal of Nutrition | 2012
Inger Ottestad; Gjermund Vogt; Kjetil Retterstøl; Mari C. W. Myhrstad; John-Erik Haugen; Astrid Nilsson; Gitte Ravn-Haren; Berit Nordvi; Kirsti Wettre Brønner; Lene Frost Andersen; Kirsten B. Holven; Stine M. Ulven
Intake of fish oil reduces the risk of CHD and CHD deaths. Marine n-3 fatty acids (FA) are susceptible to oxidation, but to our knowledge, the health effects of intake of oxidised fish oil have not previously been investigated in human subjects. The aim of the present study was to investigate markers of oxidative stress, lipid peroxidation and inflammation, and the level of plasma n-3 FA after intake of oxidised fish oil. In a double-blinded randomised controlled study, healthy subjects (aged 18-50 years, n 54) were assigned into one of three groups receiving capsules containing either 8 g/d of fish oil (1.6 g/d EPA+DHA; n 17), 8 g/d of oxidised fish oil (1.6 g/d EPA+DHA; n 18) or 8 g/d of high-oleic sunflower oil (n 19). Fasting blood and morning spot urine samples were collected at weeks 0, 3 and 7. No significant changes between the different groups were observed with regard to urinary 8-iso-PGF2α; plasma levels of 4-hydroxy-2-hexenal, 4-hydroxy-2-nonenal and α-tocopherol; serum high sensitive C-reactive protein; or activity of antioxidant enzymes in erythrocytes. A significant increase in plasma level of EPA+DHA was observed in both fish oil groups, but no significant difference was observed between the fish oil groups. No changes in a variety of in vivo markers of oxidative stress, lipid peroxidation or inflammation were observed after daily intake of oxidised fish oil for 3 or 7 weeks, indicating that intake of oxidised fish oil may not have unfavourable short-term effects in healthy human subjects.
Biochimica et Biophysica Acta | 2001
Mari C. W. Myhrstad; Cathrine Husberg; Paula Murphy; Olov Nordström; Rune Blomhoff; Jan Øyvind Moskaug; Anne-Brit Kolstø
Gamma-glutamylcysteinylglycine or glutathione (GSH) performs important protective functions in the cell through maintenance of the intracellular redox balance and elimination of xenobiotics and free radicals. The production of GSH involves a number of enzymes and enzyme subunits offering multiple opportunities for regulation. Two members of the CNC subfamily of bZIP transcription factors (TCF11/Nrf1 and Nrf2) have been implicated in the regulation of detoxification enzymes and the oxidative stress response. Here we investigate the potential role of one of these factors, TCF11/Nrf1, in the regulation of GSH levels in the cell and particularly its influence on the expression of one of the enzymatic components necessary for the synthesis of GSH, the heavy subunit of gamma-glutamylcysteine synthetase (GCS(h)). Using overexpression of the transcription factor in COS-1 cells we show that TCF11/Nrf1 stimulates GSH accumulation. Using co-transfection with reporter constructs where reporter expression is driven through the GCS(h) promoter we show that this increase may be mediated in part by induced expression of the GCS(h) gene by TCF11/Nrf1. We further show that a distal portion of the promoter including two antioxidant-response elements (AREs) predominantly mediates the TCF11/Nrf1 transactivation and an electromobility shift assay showed that just one of these AREs specifically binds TCF11/Nrf1 as heterodimers with small Maf proteins. We suggest that TCF11/Nrf1 can operate through a subset of AREs to modulate the expression of GCS(h) together with other components of the pathway and in this way play a role in regulating cellular glutathione levels.
BMC Medicine | 2010
Siv Kjølsrud Bøhn; Mari C. W. Myhrstad; Magne Thoresen; Marit Holden; Anette Karlsen; Siv Haugen Tunheim; Iris Erlund; Mette Svendsen; Ingebjørg Seljeflot; Jan Ø. Moskaug; Asim K. Duttaroy; Petter Laake; Harald Arnesen; Serena Tonstad; Andrew R. Collins; C A Drevon; Rune Blomhoff
BackgroundPlant-based diets rich in fruit and vegetables can prevent development of several chronic age-related diseases. However, the mechanisms behind this protective effect are not elucidated. We have tested the hypothesis that intake of antioxidant-rich foods can affect groups of genes associated with cellular stress defence in human blood cells. Trial registration number: NCT00520819 http://clinicaltrials.gov.MethodsIn an 8-week dietary intervention study, 102 healthy male smokers were randomised to either a diet rich in various antioxidant-rich foods, a kiwifruit diet (three kiwifruits/d added to the regular diet) or a control group. Blood cell gene expression profiles were obtained from 10 randomly selected individuals of each group. Diet-induced changes on gene expression were compared to controls using a novel application of the gene set enrichment analysis (GSEA) on transcription profiles obtained using Affymetrix HG-U133-Plus 2.0 whole genome arrays.ResultsChanges were observed in the blood cell gene expression profiles in both intervention groups when compared to the control group. Groups of genes involved in regulation of cellular stress defence, such as DNA repair, apoptosis and hypoxia, were significantly upregulated (GSEA, FDR q-values < 5%) by both diets compared to the control group. Genes with common regulatory motifs for aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (AhR/ARNT) were upregulated by both interventions (FDR q-values < 5%). Plasma antioxidant biomarkers (polyphenols/carotenoids) increased in both groups.ConclusionsThe observed changes in the blood cell gene expression profiles suggest that the beneficial effects of a plant-based diet on human health may be mediated through optimization of defence processes.
Inflammation Research | 2011
Mari C. W. Myhrstad; Kjetil Retterstøl; Vibeke H. Telle-Hansen; Inger Ottestad; Bente Halvorsen; Kirsten B. Holven; Stine M. Ulven
ObjectiveThe aim of the present paper was to review the literature in order to summarize the effects of marine n-3 fatty acids on circulating inflammatory markers among healthy subjects, subjects with high risk of developing cardiovascular disease (CVD) and in patients with CVD in human intervention studies.MethodsA systematic literature search in PubMed was performed. Intervention studies describing the effects of marine n-3 fatty acids on circulating inflammatory markers in healthy subjects, subjects with high risk of CVD and patients with CVD were included. The following exclusion criteria were used: (1) interventions assessing inflammatory markers with ex vivo methods (2) interventions with children (3) articles describing animal or cell culture studies. Twenty-two articles were included. Additionally, 13 papers from their literature lists were included based on the same inclusion and exclusion criteria as the literature search.Results and conclusionIntervention studies with marine n-3 fatty acids administered from either fish or fish oil demonstrate different results on inflammatory markers. No firm conclusion can be drawn about the effect of marine n-3 fatty acids on circulating inflammatory markers in healthy individuals, individuals with high risk of developing CVD or individuals with CVD related diseases.
PLOS ONE | 2012
Inger Ottestad; Sahar Hassani; Grethe Iren A. Borge; Achim Kohler; Gjermund Vogt; Tuulia Hyötyläinen; Matej Orešič; Kirsti Wettre Brønner; Kirsten B. Holven; Stine M. Ulven; Mari C. W. Myhrstad
Background While beneficial health effects of fish and fish oil consumption are well documented, the incorporation of n-3 polyunsaturated fatty acids in plasma lipid classes is not completely understood. The aim of this study was to investigate the effect of fish oil supplementation on the plasma lipidomic profile in healthy subjects. Methodology/Principal Findings In a double-blinded randomized controlled parallel-group study, healthy subjects received capsules containing either 8 g/d of fish oil (FO) (1.6 g/d EPA+DHA) (n = 16) or 8 g/d of high oleic sunflower oil (HOSO) (n = 17) for seven weeks. During the first three weeks of intervention, the subjects completed a fully controlled diet period. BMI and total serum triglycerides, total-, LDL- and HDL-cholesterol were unchanged during the intervention period. Lipidomic analyses were performed using Ultra Performance Liquid Chromatography (UPLC) coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (QTOFMS), where 568 lipids were detected and 260 identified. Both t-tests and Multi-Block Partial Least Square Regression (MBPLSR) analysis were performed for analysing differences between the intervention groups. The intervention groups were well separated by the lipidomic data after three weeks of intervention. Several lipid classes such as phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, phosphatidylserine, phosphatidylglycerol, and triglycerides contributed strongly to this separation. Twenty-three lipids were significantly decreased (FDR<0.05) in the FO group after three weeks compared with the HOSO group, whereas fifty-one were increased including selected phospholipids and triglycerides of long-chain polyunsaturated fatty acids. After seven weeks of intervention the two intervention groups showed similar grouping. Conclusions/Significance In healthy subjects, fish oil supplementation alters lipid metabolism and increases the proportion of phospholipids and triglycerides containing long-chain polyunsaturated fatty acids. Whether the beneficial effects of fish oil supplementation may be explained by a remodeling of the plasma lipids into phospholipids and triglycerides of long-chain polyunsaturated fatty acids needs to be further investigated. Trial Registration ClinicalTrials.gov NCT01034423