Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald D. H. Stöver is active.

Publication


Featured researches published by Harald D. H. Stöver.


Journal of Polymer Science Part A | 1998

Porous monodisperse poly(divinylbenzene) microspheres by precipitation polymerization

Wen-Hui Li; Harald D. H. Stöver

The precipitation polymerization of commercial divinylbenzene in acetonitrile containing up to 40 vol. % toluene or other cosolvents is shown to produce novel porous monodisperse poly(divinylbenzene) microspheres. These microspheres have diameters between 4 and 7 μm, total pore volumes of up to 0.52 cm3/g, and surface areas of up to 800 m2/g. As no surfactant nor stabilizer was used in the preparation of these particles, their surfaces are free of any such residues. The particles were slurry-packed into stainless steel columns for size exclusion chromatography evaluation, and the results show an exclusion limit at molecular weights of 500 g/mol.


Journal of Polymer Science Part A | 1999

Mono‐ or narrow disperse poly(methacrylate‐co‐divinylbenzene) microspheres by precipitation polymerization

Wen-Hui Li; Harald D. H. Stöver

Precipitation copolymerizations of five mono-vinyl methacrylic monomers including methyl methacrylate (MMA), butyl methacrylate (BMA), dodecyl methacrylate (DMA), glycidyl methacrylate (GMA), and hydroxyethyl methacrylate (HEMA) with divinylbenzene (DVB), in a wide range of comonomer composition, were carried out in acetonitrile to form mono- or narrow disperse crosslinked copolymer microspheres. In addition, two divinyl methacrylic monomers, ethylene glycol dimethacrylate (EGDMA) and triethylene glycol dimethacrylate (TEGDMA), were also copolymerized with DVB, and optionally a third comonomer (GMA or HEMA), to yield similar microspheres in acetonitrile. The possibility of creating porosity was explored for some of the copolymer particles. All these microspheres have clean surfaces due to the absence of any added steric or ionic stabilizer, and they are in the size of the micrometer range, varying from 1 to 7 µm, depending on the type and content of the methacrylic comonomer. Particle size distribution, surface morphology, internal texture, and porosity properties of these particles were studied by a Coulter Multisizer, a scanning electron microscope, a transmission electron microscope, and an Autosorb-1. The effects of comonomers on microsphere formation and morphology are described.


Journal of Polymer Science Part A | 1999

Monodisperse poly(chloromethylstyrene-co-divinylbenzene) microspheres by precipitation polymerization

Wen-Hui Li; Kai Li; Harald D. H. Stöver

Monodisperse poly(chloromethylstyrene-co-divinylbenzene-80) microspheres of 4–6-µm diameter were prepared by precipitation copolymerization in neat acetonitrile and in acetonitrile/toluene mixtures. These particles have clean surfaces due to the absence of any added stabilizer and up to 0.5 cm3/g pore volume, depending on the comonomer ratio and on the amount of toluene cosolvent. The effects of comonomer and cosolvent ratios on microsphere formation and morphology are described.


Langmuir | 2008

Doubly pH-responsive pickering emulsion.

Jian Li; Harald D. H. Stöver

A pH-responsive Pickering emulsion has been designed on the basis of commercially available alumina-coated silica nanoparticles (Ludox CL silica particles) and potassium hydrogen phthalate (KHP). KHP was found to bind to cationic particle surfaces at pH values between 3.5 and 5.5, enabling the resulting surface-active particles to stabilize emulsions of xylenes in water. Above and below this pH range, the system demulsifies, resulting in a reversible Pickering emulsifier having two pH-controlled, reversible transitions.


Journal of Polymer Science Part A | 1998

Synthesis of divinylbenzene–maleic anhydride microspheres using precipitation polymerization

Randy S. Frank; Jeffrey S. Downey; Harald D. H. Stöver

Narrow disperse micron-range divinylbenzene-maleic anhydride microspheres have been prepared in near quantitative yields using precipitation polymerization. A variety of solvents were investigated for use as the reaction medium with a 40:60 mixture of methyl ethyl ketone and heptane providing the best results. The effects of solvent composition on particle size and morphology and monomer loading effects were also investigated. Particle size decreased with increasing solvency (increasing MEK fraction) while increases in monomer loading caused larger particle sizes.


Biomacromolecules | 2009

Core-Cross-Linked Alginate Microcapsules for Cell Encapsulation

M. A. Jafar Mazumder; Nicholas A. D. Burke; Feng Shen; Murray Potter; Harald D. H. Stöver

Self-cross-linkable polyelectrolyte pairs comprised of poly(methacrylic acid, sodium salt-co-2-[methacryloyloxy]ethyl acetoacetate) (70:30 mol ratio, A70) and poly-L-lysine are incorporated into CaAlg beads to form either a covalently cross-linked shell or a core-cross-linked bead. In both cases the reactive polyanion is added to a solution of sodium alginate that may contain live cells and dropped into a calcium chloride gelling bath. Subsequent exposure to poly-L-lysine (15-30 kDa) leads to formation of a cross-linked shell, while exposure to lower molecular weight poly-L-lysine (4-15 kDa) leads to formation of an interpenetrating matrix of covalently cross-linked synthetic polymer within the CaAlg template. The resulting spherical composites are resistant to chemical and mechanical stress yet remain cyto-compatible. This approach to cell-encapsulation may be useful for cell immuno-isolation in therapeutic cell transplants.


Journal of Membrane Science | 2002

Polymer microcapsules by interfacial polyaddition between styrene-maleic anhydride copolymers and amines

Anna Shulkin; Harald D. H. Stöver

Abstract In the present study, styrene–maleic anhydride (SMA) copolymers were used as wall-forming materials in microencapsulation. The capsule membranes were formed by polyaddition at the interface between SMA copolymers dissolved in a dispersed relatively hydrophilic oil phase such as ethyl acetate, and a polyamine dissolved in the continuous aqueous phase. Microcapsules containing more hydrophobic core oils were prepared by either increasing the ratio of styrene to maleic anhydride groups in the copolymer, or by incorporating t -butyl styrene instead of styrene into the copolymer. Model compounds for insect sex pheromones, such as dodecyl acetate and dodecanol, were encapsulated in such SMA microcapsules, and release from these microcapsules into air was monitored over several weeks at room temperature. The relatively fast rate of release of core materials was attributed to the porous structure of the capsule walls, as confirmed by transmission and environmental scanning electron microscopy.


Langmuir | 2010

Pickering emulsion templated layer-by-layer assembly for making microcapsules.

Jian Li; Harald D. H. Stöver

Pickering emulsions stabilized by poly(sodium styrenesulfonate) (PSS) surface-modified LUDOX CL particles were used as templates for the layer-by-layer (LbL) deposition of polyelectrolytes and charged nanoparticles to form composite shells. The microcapsules resulting from repeated LbL coating with poly(diallyldimethylammonium chloride) (PDADMAC) and PSS had porous walls due to the loose arrangement of the original nanoparticle aggregates at the oil-water interface, leading to significant microcapsule rupture and low encapsulation efficiency. Microcapsules formed by coating with PDADMAC and anionic LUDOX HS nanoparticles led to dense walls and stronger microcapsules, suitable for microencapsulation of hydrophobic materials with a wide range of polarities.


Langmuir | 2010

Pickering emulsion templated interfacial atom transfer radical polymerization for microencapsulation.

Jian Li; Adam P. Hitchcock; Harald D. H. Stöver

This Article describes a new microencapsulation method based on a Pickering emulsion templated interfacial atom transfer radical polymerization (PETI-ATRP). Cationic LUDOX CL nanoparticles were coated electrostatically with an anionic polymeric ATRP initiator, poly(sodium styrene sulfonate-co-2-(2-bromoisobutyryloxy)ethyl methacrylate) (PSB), prepared by radical copolymerization of sodium styrene sulfonate and 2-(2-bromoisobutyryloxy)ethyl methacrylate (BIEM). The resulting PSB-modified CL particles were surface active and could be used to stabilize oil-in-water Pickering emulsions. ATRP of water-soluble cross-linking monomers, confined to the oil-water interface by the surface-bound PSB, then led to nanoparticle/polymer composite shells. This method allowed encapsulation of core solvents (xylene, hexadecane, perfluoroheptane) with different solubility parameters. The microcapsule (MC) wall chemistry could accommodate different monomers, demonstrating the versatility of this method. Double-walled MCs were formed by sequentially carrying out PETI-ATRP and in situ polymerization of encapsulated monomers. The double-walled structure was verified by both transmission electron microscopy (TEM) and scanning transmission X-ray microscopy (STXM).


Biomacromolecules | 2008

Self-cross-linking polyelectrolyte complexes for therapeutic cell encapsulation.

M. A. Jafar Mazumder; Feng Shen; Nicholas A. D. Burke; Murray Potter; Harald D. H. Stöver

Self-cross-linking polyelectrolytes are used to strengthen the surface of calcium alginate beads for cell encapsulation. Poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride), containing 30 mol % 2-aminoethyl methacrylate, and poly(sodium methacrylate), containing 30 mol % 2-(methacryloyloxy)ethyl acetoacetate, were prepared by radical polymerization. Sequential deposition of these polyelectrolytes on calcium alginate films or beads led to a shell consisting of a covalently cross-linked polyelectrolyte complex that resisted osmotic pressure changes as well as challenges with citrate and high ionic strength. Confocal laser fluorescence microscopy revealed that both polyelectrolytes were concentrated in the outer 7-25 microm of the calcium alginate beads. The thickness of this cross-linked shell increased with exposure time. GPC studies of solutions permeating through analogous flat model membranes showed molecular weight cut-offs between 150 and 200 kg/mol for poly(ethylene glycol), suitable for cell encapsulation. C 2C 12 mouse cells were shown to be viable within calcium alginate capsules coated with the new polyelectrolytes, even though some of the capsules showed fibroid overcoats when implanted in mice due to an immune response.

Collaboration


Dive into the Harald D. H. Stöver's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge