Harald Grove
Norwegian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Grove.
Nature | 2016
Sigbjørn Lien; Ben F. Koop; Simen Rød Sandve; Jason R. Miller; Matthew Kent; Torfinn Nome; Torgeir R. Hvidsten; Jong Leong; David R. Minkley; Aleksey V. Zimin; Fabian Grammes; Harald Grove; Arne B. Gjuvsland; Brian Walenz; Russell A. Hermansen; Kristian R. von Schalburg; Eric B. Rondeau; Alex Di Genova; Jeevan Karloss Antony Samy; Jon Olav Vik; Magnus Dehli Vigeland; Lis Caler; Unni Grimholt; Sissel Jentoft; Dag Inge Våge; Pieter J. de Jong; Thomas Moen; Matthew Baranski; Yniv Palti; Douglas W. Smith
The whole-genome duplication 80 million years ago of the common ancestor of salmonids (salmonid-specific fourth vertebrate whole-genome duplication, Ss4R) provides unique opportunities to learn about the evolutionary fate of a duplicated vertebrate genome in 70 extant lineages. Here we present a high-quality genome assembly for Atlantic salmon (Salmo salar), and show that large genomic reorganizations, coinciding with bursts of transposon-mediated repeat expansions, were crucial for the post-Ss4R rediploidization process. Comparisons of duplicate gene expression patterns across a wide range of tissues with orthologous genes from a pre-Ss4R outgroup unexpectedly demonstrate far more instances of neofunctionalization than subfunctionalization. Surprisingly, we find that genes that were retained as duplicates after the teleost-specific whole-genome duplication 320 million years ago were not more likely to be retained after the Ss4R, and that the duplicate retention was not influenced to a great extent by the nature of the predicted protein interactions of the gene products. Finally, we demonstrate that the Atlantic salmon assembly can serve as a reference sequence for the study of other salmonids for a range of purposes.
BMC Genomics | 2017
Ole Kristian Tørresen; Bastiaan Star; Sissel Jentoft; William Brynildsen Reinar; Harald Grove; Jason R. Miller; Brian Walenz; James Knight; Jenny M. Ekholm; Paul Peluso; Rolf B. Edvardsen; Ave Tooming-Klunderud; Morten Skage; Sigbjørn Lien; Kjetill S. Jakobsen
BackgroundThe first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies.ResultsBy combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual.ConclusionsThe inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.
Heredity | 2015
Serap Gonen; Matthew Baranski; Ingunn Thorland; Ashie Norris; Harald Grove; Petter Arnesen; Håvard Bakke; Sigbjørn Lien; Stephen Bishop; Ross Houston
Pancreas disease (PD), caused by a salmonid alphavirus (SAV), has a large negative economic and animal welfare impact on Atlantic salmon aquaculture. Evidence for genetic variation in host resistance to this disease has been reported, suggesting that selective breeding may potentially form an important component of disease control. The aim of this study was to explore the genetic architecture of resistance to PD, using survival data collected from two unrelated populations of Atlantic salmon; one challenged with SAV as fry in freshwater (POP 1) and one challenged with SAV as post-smolts in sea water (POP 2). Analyses of the binary survival data revealed a moderate-to-high heritability for host resistance to PD in both populations (fry POP 1 h2~0.5; post-smolt POP 2 h2~0.4). Subsets of both populations were genotyped for single nucleotide polymorphism markers, and six putative resistance quantitative trait loci (QTL) were identified. One of these QTL was mapped to the same location on chromosome 3 in both populations, reaching chromosome-wide significance in both the sire- and dam-based analyses in POP 1, and genome-wide significance in a combined analysis in POP 2. This independently verified QTL explains a significant proportion of host genetic variation in resistance to PD in both populations, suggesting a common underlying mechanism for genetic resistance across lifecycle stages. Markers associated with this QTL are being incorporated into selective breeding programs to improve PD resistance.
Genome Biology and Evolution | 2016
Marte Sodeland; Per Erik Jorde; Sigbjørn Lien; Sissel Jentoft; Paul R. Berg; Harald Grove; Matthew Kent; Mariann Arnyasi; Esben Moland Olsen; Halvor Knutsen
In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at “genomic islands of divergence,” resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The “genomic islands” extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range.
Electrophoresis | 2009
Harald Grove; Ellen Mosleth Færgestad; Kristin Hollung; Harald Martens
Silver staining is a commonly used protein stain to visualise proteins separated by 2‐DE. Despite this, the technique suffers from a limited dynamic range, making the simultaneous quantification of high‐ and low‐abundant proteins difficult. In this paper we take advantage of the fact that silver staining is not an end‐point stain by photographing the gels during development. This procedure provides information about the change in measured absorbance for each pixel in the protein spots on the gel. The maximum rate of change was found to be correlated with the amount of applied protein, providing a new way of estimating protein amount in 2‐DE gels. We observed an improvement in the dynamic range of silver staining by up to two orders of magnitude.
BMC Genomics | 2011
Marte Sodeland; Matthew Kent; Ben J. Hayes; Harald Grove; Sigbjørn Lien
BackgroundComparison of recent patterns of recombination derived from linkage maps to historical patterns of recombination from linkage disequilibrium (LD) could help identify genomic regions affected by strong artificial selection, appearing as reduced recent recombination. Norwegian Red cattle (NRF) make an interesting case study for investigating these patterns as it is an admixed breed with an extensively recorded pedigree. NRF have been under strong artificial selection for traits such as milk and meat production, fertility and health.While measures of LD is also crucial for determining the number of markers required for association mapping studies, estimates of recombination rate can be used to assess quality of genomic assemblies.ResultsA dataset containing more than 17,000 genome-wide distributed SNPs and 2600 animals was used to assess recombination rates and LD in NRF. Although low LD measured by r2 was observed in NRF relative to some of the breeds from which this breed originates, reports from breeds other than those assessed in this study have described more rapid decline in r2 at short distances than what was found in NRF. Rate of decline in r2 for NRF suggested that to obtain an expected r2 between markers and a causal polymorphism of at least 0.5 for genome-wide association studies, approximately one SNP every 15 kb or a total of 200,000 SNPs would be required. For well known quantitative trait loci (QTLs) for milk production traits on Bos Taurus chromosomes 1, 6 and 20, map length based on historic recombination was greater than map length based on recent recombination in NRF.Further, positions for 130 previously unpositioned contigs from assembly of the bovine genome sequence (Btau_4.0) found using comparative sequence analysis were validated by linkage analysis, and 28% of these positions corresponded to extreme values of population recombination rate.ConclusionWhile LD is reduced in NRF compared to some of the breeds from which this admixed breed originated, it is elevated over short distances compared to some other cattle breeds. Genomic regions in NRF where map length based on historic recombination was greater than map length based on recent recombination coincided with some well known QTL regions for milk production traits.Linkage analysis in combination with comparative sequence analysis and detection of regions with extreme values of population recombination rate proved to be valuable for detecting problematic regions in the Btau_4.0 genome assembly.
bioRxiv | 2016
Ole Kristian Tørresen; Bastiaan Star; Sissel Jentoft; William Brynildsen Reinar; Harald Grove; Jason R. Miller; Brian Walenz; James Knight; Jenny M. Ekholm; Paul Peluso; Rolf B. Edvardsen; Ave Tooming-Klunderud; Morten Skage; Sigbjørn Lien; Kjetill S. Jakobsen
Background: The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies. Results: By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21 % of the TRs across the assembly, 19 % in the promoter regions and 12 % in the coding sequences are heterozygous in the sequenced individual. Conclusions: The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.
Genetics Selection Evolution | 2017
Hanne Gro Olsen; Tim Martin Knutsen; Achim Kohler; Morten Svendsen; Lars Gidskehaug; Harald Grove; Torfinn Nome; Marte Sodeland; Kristil Kindem Sundsaasen; Matthew Kent; Harald Martens; Sigbjørn Lien
BackgroundBovine milk is widely regarded as a nutritious food source for humans, although the effects of individual fatty acids on human health is a subject of debate. Based on the assumption that genomic selection offers potential to improve milk fat composition, there is strong interest to understand more about the genetic factors that influence the biosynthesis of bovine milk and the molecular mechanisms that regulate milk fat synthesis and secretion. For this reason, the work reported here aimed at identifying genetic variants that affect milk fatty acid composition in Norwegian Red cattle. Milk fatty acid composition was predicted from the nation-wide recording scheme using Fourier transform infrared spectroscopy data and applied to estimate heritabilities for 36 individual and combined fatty acid traits. The recordings were used to generate daughter yield deviations that were first applied in a genome-wide association (GWAS) study with 17,343 markers to identify quantitative trait loci (QTL) affecting fatty acid composition, and next on high-density and sequence-level datasets to fine-map the most significant QTL on BTA13 (BTA for Bos taurus chromosome).ResultsThe initial GWAS revealed 200 significant associations, with the strongest signals on BTA1, 13 and 15. The BTA13 QTL highlighted a strong functional candidate gene for de novo synthesis of short- and medium-chained saturated fatty acids; acyl-CoA synthetase short-chain family member 2. However, subsequent fine-mapping using single nucleotide polymorphisms (SNPs) from a high-density chip and variants detected by resequencing showed that the effect was more likely caused by a second nearby gene; nuclear receptor coactivator 6 (NCOA6). These findings were confirmed with results from haplotype studies. NCOA6 is a nuclear receptor that interacts with transcription factors such as PPARγ, which is a major regulator of bovine milk fat synthesis.ConclusionsAn initial GWAS revealed a highly significant QTL for de novo-synthesized fatty acids on BTA13 and was followed by fine-mapping of the QTL within NCOA6. The most significant SNPs were either synonymous or situated in introns; more research is needed to uncover the underlying causal DNA variation(s).
Animal Genetics | 2017
Maren van Son; Rahul Agarwal; Matthew Kent; Harald Grove; Eli Grindflek; Sigbjørn Lien
Summary Male piglets are routinely castrated to eliminate boar taint. However, this treatment is undesirable, and alternative approaches, including genetic strategies to reduce boar taint, are demanded. Androstenone is one of the causative agents of boar taint, and a QTL region affecting this pheromone has previously been reported on SSC5: 22.6–24.8 Mb in Duroc. The QTL region is one of the few reported for androstenone that does not simultaneously affect levels of other sex steroids. The main objective of this study was to fine map this QTL. Whole genome sequence data from 23 Norwegian Duroc boars were analyzed to detect new polymorphisms within the QTL region. A subset of 161 SNPs was genotyped in 834 Duroc sires and analyzed for association with androstenone in adipose tissue and testosterone, estrone sulphate and 17β‐estradiol in blood plasma. Our results revealed 100 SNPs significantly associated with androstenone levels in fat (P < 0.001) with 94 of the SNPs being in strong linkage disequilibrium in the region 23.03–24.27 Mb. This haplotype block contains at least four positional candidate genes (HSD17B6,SDR9C7,RDH16 and STAT6) involved in androstenone biosynthesis. No significant associations were found between any of the SNPs and levels of testosterone and estrogens, confirming previous findings. The amount of phenotypic variance explained by single SNPs within the haplotype block was as high as 5.4%. As the SNPs in this region significantly affect levels of androstenone without affecting levels of other sex steroids, they are especially interesting as genetic markers for selection against boar taint.
Molecular Ecology | 2016
Tina Graceline Kirubakaran; Harald Grove; Matthew Kent; Simen Rød Sandve; Matthew Baranski; Torfinn Nome; Maria Cristina De Rosa; Benedetta Righino; Torild Johansen; Håkon Otterå; Anna K. Sonesson; Sigbjørn Lien; Øivind Andersen