Harald Kirsebom
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Kirsebom.
Journal of Separation Science | 2011
Fatima M. Plieva; Harald Kirsebom; Bo Mattiasson
Cryostructuration platform renders it possible to form macroporous materials (known as cryogels) with a broad range of porosity, from structures with combination of meso- and macropores to structures with 100-μm sized macropores. When these materials are formed in the shape of monoliths (monolithic cryogels), they present a unique monolithic stationary medium for specific applications. This review summarizes the recent research on the preparation and characterization of cryostructurated monolithic cryogels for (bio)separation and points to some future perspectives.
Langmuir | 2010
Harald Kirsebom; Daniel Topgaard; Igor Yu. Galaev; Bo Mattiasson
The freezing of monomeric mixtures is known to concentrate solutes in a nonfrozen phase in the area surrounding the ice crystals. The concentration of such solutes is determined by the freezing temperature. Although salts or solvents do not directly react in the polymerization reaction, they do change the composition and properties of the nonfrozen phase. In this study, we investigated the influence of the addition of various salts and solvents on the structure of macroporous hydrogels formed in a semifrozen state through aqueous free-radical polymerization. The change in composition of the nonfrozen phase was studied using NMR to monitor the freezing of water, and the structural changes of the gels were observed using scanning electron microscopy. It was found that the addition of methanol or acetone caused the formation of reaction-induced phase separation polymerization due to cryoconcentration, which caused a significant increase of methanol or acetone in the nonfrozen phase. This resulted in a material with bimodal pore size distribution with pores of 10-80 μm in diameter caused by cryogelation, and with pores in the polymeric matrix with a diameter of less than 1 μm due to the reaction-induced phase separation. Addition of salts to the monomeric mixture resulted in a structure with only pores of 10-80 μm in diameter due to cryogelation. Increasing the amount of salts added resulted in the formation of thicker pore walls and thus a slight reduction in pore size compared to a sample with no added solute. The possibility of changing the structure and properties of the gels by adding different solutes could open up new applications for these materials, for example, chromatography applications.
Water Research | 2012
Linda Önnby; Vusumzi Pakade; Bo Mattiasson; Harald Kirsebom
Removal of As(V) by adsorption from water solutions was studied using three different synthetic adsorbents. The adsorbents, (a) aluminium nanoparticles (Alu-NPs, <50 nm) incorporated in amine rich cryogels (Alu-cryo), (b) molecular imprinted polymers (<38 μm) in polyacrylamide cryogels (MIP-cryo) and (c) thiol functionalised cryogels (SH-cryo) were evaluated regarding material characteristics and arsenic removal in batch test and continuous mode. Results revealed that a composite design with particles incorporated in cryogels was a successful means for applying small particles (nano- and micro- scale) in water solutions with maintained adsorption capacity and kinetics. Low capacity was obtained from SH-cryo and this adsorbent was hence excluded from the study. The adsorption capacities for the composites were 20.3 ± 0.8 mg/g adsorbent (Alu-cryo) and 7.9 ± 0.7 mg/g adsorbent (MIP-cryo) respectively. From SEM images it was seen that particles were homogeneously distributed in Alu-cryo and heterogeneously distributed in MIP-cryo. The particle incorporation increased the mechanical stability and the polymer backbones of pure polyacrylamide (MIP-cryo) were of better stability than the amine containing polymer backbone (Alu-cryo). Both composites worked well in the studied pH range of pH 2-8. Adsorption tested in real wastewater spiked with arsenic showed that co-ions (nitrate, sulphate and phosphate) affected arsenic removal for Alu-cryo more than for MIP-cryo. Both composites still adsorbed well in the presence of counter-ions (copper and zinc) present at low concentrations (μg/l). The unchanged and selective adsorption in realistic water observed for MIP-cryo was concluded to be due to a successful imprinting, here controlled using a non-imprinted polymer (NIP). A development of MIP-cryo is needed, considering its low adsorption capacity.
Journal of Chromatography A | 2013
Solmaz Hajizadeh; Changgang Xu; Harald Kirsebom; Lei Ye; Bo Mattiasson
In this work, a new macroporous molecularly imprinted cryogel (MIP composite cryogel) was synthesized by glutaraldehyde cross-linking reaction of poly(vinyl alcohol) (PVA) particles and amino-modified molecularly imprinted core-shell nanoparticles. The MIP core-shell nanoparticles were prepared using propranolol as a template by one-pot precipitation polymerization with sequential monomer addition. The characteristics of the MIP composite cryogel were studied by scanning electron microscopy (SEM) and texture analyzer. The macroporous structure of the composite (with the pore size varying from a few micrometers to 100 μm) enabled high mass transfer of particulate-containing fluids. In a solid phase extraction (SPE) process, the efficiency and selectivity of the MIP composite cryogel were investigated, where the cryogel was used as an affinity matrix to remove propranolol from aqueous solution as well as from complex plasma sample without prior protein precipitation. The MIP composite cryogel maintained high selectivity and stability and could be used repeatedly after regeneration.
Nanoscale Research Letters | 2011
Kristin Syverud; Harald Kirsebom; Solmaz Hajizadeh; Gary Chinga-Carrasco
Cellulose nanofibrils were produced from P. radiata kraft pulp fibers. The nanofibrillation was facilitated by applying 2,2,6,6-tetramethylpiperidinyl-1-oxyl-mediated oxidation as pretreatment. The oxidized nanofibrils were cross-linked with polyethyleneimine and poly N-isopropylacrylamide-co-allylamine-co-methylenebisacrylamide particles and were frozen to form cryo-structured gels. Samples of the gels were critical-point dried, and the corresponding structures were assessed with scanning electron microscopy. It appears that the aldehyde groups in the oxidized nanofibrils are suitable reaction sites for cross-linking. The cryo-structured materials were spongy, elastic, and thus capable of regaining their shape after a given pressure was released, indicating a successful cross-linking. These novel types of gels are considered potential candidates in biomedical and biotechnological applications.
Journal of Separation Science | 2010
Solmaz Hajizadeh; Harald Kirsebom; Igor Yu. Galaev; Bo Mattiasson
Bromate, which is a potential carcinogen, should be removed from drinking water to levels of less than 10 microg/L. A chitosan-based molecularly imprinted polymer (MIP) and a sol-gel ion-exchange double hydrous oxide (Fe(2)O(3) x Al(2)O(3) x xH(2)O) adsorbent (inorganic adsorbent) were prepared for this purpose. The sorption behavior of each adsorbent including sorption kinetics, isotherms, effect of pH and selective sorption were investigated in detail. Sorption experimental results showed that the MIP adsorbents had better selectivity for bromate, even in the presence of high concentrations of nitrate, as compared to the inorganic adsorbent. It was found that pH does not affect the adsorption of bromate when using the inorganic adsorbent. Additionally, both adsorbents were immobilized in a polymeric cryogel inside plastic carriers to make them more practical for using in larger scale. Regeneration of the cryogels either containing MIP or inorganic adsorbents were carried out by 0.1 M NaOH and 0.1 M NaCl, respectively. It was found that the regenerated MIP and inorganic adsorbents could be used at least three and five times, respectively, without any loss in their sorption capacity.
Journal of Colloid and Interface Science | 2012
Dmitriy Berillo; Bo Mattiasson; Igor Yu. Galaev; Harald Kirsebom
In this study, it was found that macroporous hydrogels were formed when self-assembly of fluorenyl-9-methoxycarbonyl (Fmoc)-diphenylalanine (Phe-Phe) peptides was induced using glucono-δ-lactone (GdL) in apparently frozen samples. Formed cryogels exhibited a heterogeneous structure with pore walls of densely packed fibres of assembled dipeptides and pores in the range 10-100 μm. Hydrogels formed from the same composition above the freezing point exhibited a homogenous structure without any apparent porosity. The formed gels were characterised using microscopy techniques, CD-spectroscopy and stress sweeps. The cryogels exhibited less mechanical strength than the hydrogels that might be due to the heterogeneous structure of the former. It appeared that the self-assembled peptide both in the cryo- and hydrogel maintained the β-sheet structure commonly attributed to these.
Journal of Tissue Engineering and Regenerative Medicine | 2013
Ilyas Inci; Harald Kirsebom; Igor Yu. Galaev; Bo Mattiasson; Erhan Pişkin
Gelatin‐based cryogels were prepared by using a novel crosslinker, oxidized dextran, which was synthesized and used in the study. The cryogels were also loaded with freshly formed hydroxyapatite (HA) particles. These cryogels are opaque, spongy and highly elastic and have a pore structure with large interconnected pores. They swell about 500% in aqueous media and within a few minutes reach their final swollen forms. The elastic moduli of HA‐containing cryogels were 18.5 ± 3.0 kPa, which is suitable for non‐load‐bearing bone tissue‐engineering (TE) applications, especially for the craniofacial area. Copyright
Langmuir | 2009
Harald Kirsebom; Bo Mattiasson; Igor Yu. Galaev
Macroporous materials are prepared from microgels or microbes by one-step chemical cross-linking under semifrozen conditions. This avoids the use of freeze drying of the sample because a chemically stable structure is prepared under semifrozen conditions. Cryostructuration results in a material with pore walls composed of closely packed particles.
Journal of Chromatography A | 2011
Junxian Yun; Gry Ravn Jespersen; Harald Kirsebom; Per-Erik Gustavsson; Bo Mattiasson; Igor Yu. Galaev
A capillary-based model modified for characterization of monolithic cryogels is presented with key parameters like the pore size distribution, the tortuosity and the skeleton thickness employed for describing the porous structure characteristics of a cryogel matrix. Laminar flow, liquid dispersion and mass transfer in each capillary are considered and the model is solved numerically by the finite difference method. As examples, two poly(hydroxyethyl methacrylate) (pHEMA) based cryogel beds have been prepared by radical cryo-copolymerization of monomers and used to test the model. The axial dispersion behaviors, the pressure drop vs. flow rate performance as well as the non-adsorption breakthrough curves of different proteins, i.e., lysozyme, bovine serum albumin (BSA) and concanavalin A (Con A), at various flow velocities in the cryogel beds are measured experimentally. The lumped parameters in the model are determined by matching the model prediction with the experimental data. The results showed that for a given cryogel column, by using the model based on the physical properties of the cryogel (i.e., diameter, length, porosity, and permeability) together with the protein breakthrough curves one can obtain a reasonable estimate and detailed characterization of the porous structure properties of cryogel matrix, particularly regarding the number of capillaries, the capillary tortuousness, the pore size distribution and the skeleton thickness. The model is also effective with regards to predicting the flow performance and the non-adsorption breakthrough profiles of proteins at different flow velocities. It is thus expected to be applicable for characterizing the properties of cryogels and predicting the chromatographic performance under a given set of operating conditions.