Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Mauser is active.

Publication


Featured researches published by Harald Mauser.


Journal of Medicinal Chemistry | 2013

β-Secretase (BACE1) Inhibitors with High in Vivo Efficacy Suitable for Clinical Evaluation in Alzheimer’s Disease

Hans Hilpert; Wolfgang Guba; Thomas Johannes Woltering; Wolfgang Wostl; Emmanuel Pinard; Harald Mauser; Alexander V. Mayweg; Mark Rogers-Evans; Roland Humm; Daniela Krummenacher; Thorsten Muser; Christian Schnider; Helmut Jacobsen; Laurence Ozmen; Alessandra Bergadano; David Banner; Remo Hochstrasser; Andreas Kuglstatter; Pascale David-Pierson; Holger Fischer; Alessandra Polara; Robert Narquizian

An extensive fluorine scan of 1,3-oxazines revealed the power of fluorine(s) to lower the pKa and thereby dramatically change the pharmacological profile of this class of BACE1 inhibitors. The CF3 substituted oxazine 89, a potent and highly brain penetrant BACE1 inhibitor, was able to reduce significantly CSF Aβ40 and 42 in rats at oral doses as low as 1 mg/kg. The effect was long lasting, showing a significant reduction of Aβ40 and 42 even after 24 h. In contrast to 89, compound 1b lacking the CF3 group was virtually inactive in vivo.


Journal of Computer-aided Molecular Design | 2002

A validation study on the practical use of automated de novo design

Martin Stahl; Nikolay P. Todorov; Timothy James; Harald Mauser; Hans-Joachim Boehm; Philip M. Dean

The de novo design program Skelgen has been used to design inhibitor structures for four targets of pharmaceutical interest. The designed structures are compared to modeled binding modes of known inhibitors (i) visually and (ii) by means of a novel similarity measure considering the size and spatial proximity of the maximum common substructure of two small molecules. It is shown that the Skelgen algorithm generates representatives of many inhibitor classes within a very short time and that the new similarity measure is useful for comparing and clustering designed structures. The results demonstrate the necessity of properly defining search constraints in practical applications of de novo design.


Journal of Chemical Information and Modeling | 2005

Database clustering with a combination of fingerprint and maximum common substructure methods.

Martin Stahl; Harald Mauser

We present an efficient method to cluster large chemical databases in a stepwise manner. Databases are first clustered with an extended exclusion sphere algorithm based on Tanimoto coefficients calculated from Daylight fingerprints. Substructures are then extracted from clusters by iterative application of a maximum common substructure algorithm. Clusters with common substructures are merged through a second application of an exclusion sphere algorithm. In a separate step, singletons are compared to cluster substructures and added to a cluster if similarity is sufficiently high. The method identifies tight clusters with conserved substructures and generates singletons only if structures are truly distinct from all other library members. The method has successfully been applied to identify the most frequently occurring scaffolds in databases, for the selection of analogues of screening hits and in the prioritization of chemical libraries offered by commercial vendors.


Journal of Chemical Information and Modeling | 2007

Chemical Fragment Spaces for de novo Design

Harald Mauser; Martin Stahl

Chemical fragment spaces are combinations of molecular fragments and connection rules. They offer the possibility to encode an enormously large number of chemical structures in a very compact format. Fragment spaces are useful both in similarity-based (2D) and structure-based (3D) de novo design applications. We present disconnection and filtering rules leading to several thousand unique, medium size fragments when applied to databases of druglike molecules. We evaluate alternative strategies to select subsets of these fragments, with the aim of maximizing the coverage of known druglike chemical space with a strongly reduced set of fragments. For these evaluations, we use the Ftrees fragment space method. We assess a diversity-oriented selection method based on maximum common substructures and a method biased toward high frequency of occurrence of fragments and find that they are complementary to each other.


Bioorganic & Medicinal Chemistry Letters | 2013

BACE1 inhibitors: a head group scan on a series of amides.

Thomas Johannes Woltering; Wolfgang Wostl; Hans Hilpert; Mark Rogers-Evans; Emmanuel Pinard; Alexander V. Mayweg; Martin Göbel; David W. Banner; Jörg Benz; Massimiliano Travagli; Martina Pollastrini; Guido Marconi; Emanuele Gabellieri; Wolfgang Guba; Harald Mauser; Matteo Andreini; Helmut Jacobsen; Eoin Power; Robert Narquizian

A series of amides bearing a variety of amidine head groups was investigated as BACE1 inhibitors with respect to inhibitory activity in a BACE1 enzyme as well as a cell-based assay. Determination of their basicity as well as their properties as substrates of P-glycoprotein revealed that a 2-amino-1,3-oxazine head group would be a suitable starting point for further development of brain penetrating compounds for potential Alzheimers disease treatment.


ChemMedChem | 2013

Design of Libraries Targeting Protein–Protein Interfaces

David C. Fry; Kuo‐Sen Huang; Paola Di Lello; Peter Mohr; Klaus Müller; Sung-Sau So; Takeo Harada; Martin Stahl; Binh Thanh Vu; Harald Mauser

TARGETING PPIS: A novel strategy for designing libraries targeting protein-protein interfaces enabled us to identify diverse chemical entry points to interact with therapeutic targets for which conventional screening libraries delivered no or only few hit structures. The concept was experimentally validated by early hit evaluation in biochemical screens and early ADMET profiling.


Journal of Biological Chemistry | 2008

Guinea pig chymase is leucine-specific: a novel example of functional plasticity in the chymase/granzyme family of serine peptidases.

George H. Caughey; Jeremy Beauchamp; Daniel Schlatter; Wilfred W. Raymond; Neil N. Trivedi; David Banner; Harald Mauser; Jürgen Fingerle

To explore guinea pigs as models of chymase biology, we cloned and expressed the guinea pig ortholog of human chymase. In contrast to rats and mice, guinea pigs appear to express just one chymase, which belongs to the α clade, like primate chymases and mouse mast cell protease-5. The guinea pig enzyme autolyzes at Leu residues in the loop where human chymase autolyzes at Phe. In addition, guinea pig α-chymase selects P1 Leu in a combinatorial peptide library and cleaves Ala-Ala-Pro-Leu-4-nitroanilide but has negligible activity toward substrates with P1 Phe and does not cleave angiotensin I. This contrasts with human chymase, which cleaves after Phe or Tyr, prefers P1 Phe in peptidyl 4-nitroanilides, and avidly hydrolyzes angiotensin I at Phe8 to generate bioactive angiotensin II. The guinea pig enzyme also is inactivated more effectively by α1-antichymotrypsin, which features P1 Leu in the reactive loop. Unlike mouse, rat, and hamster α-chymases, guinea pig chymase lacks elastase-like preference for P1 Val or Ala. Partially humanized A216G guinea pig chymase acquires human-like P1 Phe- and angiotensin-cleaving capacity. Molecular models suggest that the wild type active site is crowded by the Ala216 side chain, which potentially blocks access by bulky P1 aromatic residues. On the other hand, the guinea pig pocket is deeper than in Val-selective chymases, explaining the preference for the longer aliphatic side chain of Leu. These findings are evidence that chymase-like peptidase specificity is sensitive to small changes in structure and provide the first example of a vertebrate Leu-selective peptidase.


Journal of Medicinal Chemistry | 2013

Identification of Potent and Selective Cathepsin S Inhibitors Containing Different Central Cyclic Scaffolds

Hans Hilpert; Harald Mauser; Roland Humm; Lilli Anselm; Holger Kuehne; Guido Hartmann; Sabine Gruener; David Banner; Joerg Benz; Bernard Gsell; Andreas Kuglstatter; Martine Stihle; Ralf Thoma; Ruben Alvarez Sanchez; Hans Iding; Beat Wirz; Wolfgang Haap

Starting from the weakly active dual CatS/K inhibitor 5, structure-based design supported by X-ray analysis led to the discovery of the potent and selective (>50,000-fold vs CatK) cyclopentane derivative 22 by exploiting specific ligand-receptor interactions in the S2 pocket of CatS. Changing the central cyclopentane scaffold to the analogous pyrrolidine derivative 57 decreased the enzyme as well as the cell-based activity significantly by 24- and 69-fold, respectively. The most promising scaffold identified was the readily accessible proline derivative (e.g., 79). This compound, with an appealing ligand efficiency (LE) of 0.47, included additional structural modifications binding in the S1 and S3 pockets of CatS, leading to favorable in vitro and in vivo properties. Compound 79 reduced IL-2 production in a transgenic DO10.11 mouse model of antigen presentation in a dose-dependent manner with an ED50 of 5 mg/kg.


Journal of Molecular Modeling | 2008

ParaFrag—an approach for surface-based similarity comparison of molecular fragments

Arjen-Joachim Jakobi; Harald Mauser; Timothy Clark

AbstractA frequent task in computer-aided drug design is to identify novel chemotypes similar in activity but structurally different to a given reference structure. Here we report the development of a novel method for atom-independent similarity comparison of molecular fragments (substructures of drug-like molecules). The fragments are characterized by their local surface properties coded in the form of 3D pharmacophores. As surface properties, we used the electrostatic potential (MEP), the local ionization energy (IEL), local electron affinity (EAL) and local polarizability (POL) calculated on isodensity surfaces. A molecular fragment can then be represented by a minimal set of extremes for each surface property. We defined a tolerance sphere for each of these extremes, thus allowing us to assess the similarity of fragments in an analogous manner to classical pharmacophore comparison. As a first application of this method we focused on comparing rigid fragments suitable for scaffold hopping. A retrospective analysis of successful scaffold hopping reported for Factor Xa inhibitors [Wood MR et al (2006) J Med Chem 49:1231] showed that our method performs well where atom-based similarity metrics fail. FigureEncoding surface hotspots as a ParaFrag pharmacophore


MRS Proceedings | 1997

Structural and electronic properties of self-assembled supramolecular grid structures: Doping of supramolecular thin films

J. Hassmann; C. Y. Hahn; Oliver Waldmann; E. Volz; H-J. Schleemilch; N. Hallschmid; P. Müller; G. S. Hanan; Dirk Volkmer; Ulrich S. Schubert; J.-M. Lehn; Harald Mauser; Andreas Hirsch; Timothy Clark

Thin films of self-assembled supramolecular grid structures were prepared by electrochemical deposition. The surface structure of the films was determined by electrochemical in-situ scanning tunneling microscopy (STM), revealing ordered monolayers of the grid molecules on a Au(111) surface. The electronic structure of the films was studied by photoelectron spectroscopy. The thin films show semiconducting behavior with an insulating gap of ca. 2.5 eV. The size of insulating gap can be reduced to 0.5 eV by doping the films with additional Cd{sup 2+} ions, which is in agreement with molecular orbital calculations. Additionally, conductivity measurements were performed. By doping of the thin films, their conductivity could be increased by several orders of magnitude. This is due to additional electronic states in the insulating HOMO-LUMO gap, which is confirmed by UPS measurements.

Collaboration


Dive into the Harald Mauser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Banner

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy Clark

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge