Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Stark is active.

Publication


Featured researches published by Harald Stark.


Geophysical Research Letters | 2012

Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass

Roya Bahreini; Ann M. Middlebrook; J. A. de Gouw; Carsten Warneke; M. Trainer; C. A. Brock; Harald Stark; Steven S. Brown; William P. Dubé; J. B. Gilman; K. Hall; John S. Holloway; William C. Kuster; A. E. Perring; André S. H. Prévôt; Joshua P. Schwarz; J. R. Spackman; Sönke Szidat; N. L. Wagner; Rodney J. Weber; P. Zotter; D. D. Parrish

Although laboratory experiments have shown that organic compounds in both gasoline fuel and diesel engine exhaust can form secondary organic aerosol (SOA), the fractional contribution from gasoline and diesel exhaust emissions to ambient SOA in urban environments is poorly known. Here we use airborne and ground-based measurements of organic aerosol (OA) in the Los Angeles (LA) Basin, California made during May and June 2010 to assess the amount of SOA formed from diesel emissions. Diesel emissions in the LA Basin vary between weekdays and weekends, with 54% lower diesel emissions on weekends. Despite this difference in source contributions, in air masses with similar degrees of photochemical processing, formation of OA is the same on weekends and weekdays, within the measurement uncertainties. This result indicates that the contribution from diesel emissions to SOA formation is zero within our uncertainties. Therefore, substantial reductions of SOA mass on local to global scales will be achieved by reducing gasoline vehicle emissions.


Review of Scientific Instruments | 2002

Simultaneous in situ detection of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy

Steven S. Brown; Harald Stark; Steven J. Ciciora; R. J. McLaughlin; A. R. Ravishankara

This article describes the application of cavity ring-down spectroscopy (CaRDS) to the simultaneous concentration measurement of nitrate radical, NO3, and dinitrogen pentoxide, N2O5, in the ambient atmosphere. The sensitivity for detection of both NO3 and N2O5 is 0.5 pptv (2σ) for a 5 s integration, comparable to or better than previous measurements of NO3 (e.g., via DOAS), but with significantly better time resolution. Furthermore, direct measurement of N2O5 represent a previously unavailable capability. Concentrations of both species are measured simultaneously in two separate flow systems and optical cavities pumped by the same pulsed dye laser at 662 nm. One of the flow systems remains at ambient temperature for detection of NO3, while the other is heated to 80 °C to induce thermal decomposition of N2O5 providing a measurement of the sum of the NO3 and N2O5 concentrations. This article outlines a series of laboratory and field tests of the instrument’s performance. Important considerations include sig...


Environmental Science & Technology | 2012

Vertically Resolved Measurements of Nighttime Radical Reservoirs in Los Angeles and Their Contribution to the Urban Radical Budget

Cora J. Young; Rebecca A. Washenfelder; James M. Roberts; Levi H Mielke; Hans D. Osthoff; Catalina Tsai; Olga Pikelnaya; J. Stutz; P. R. Veres; Anthony Cochran; Trevor C. VandenBoer; James Flynn; N. Grossberg; Christine Haman; Barry Lefer; Harald Stark; Martin Graus; Joost A. de Gouw; J. B. Gilman; William C. Kuster; Steven S. Brown

Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.


Journal of Geophysical Research | 2010

Biogenic emission measurement and inventories determination of biogenic emissions in the eastern United States and Texas and comparison with biogenic emission inventories

Carsten Warneke; J. A. de Gouw; L. A. Del Negro; J. Brioude; S. A. McKeen; Harald Stark; William C. Kuster; Paul D. Goldan; M. Trainer; F. C. Fehsenfeld; Christine Wiedinmyer; Alex Guenther; Armin Hansel; Armin Wisthaler; E. Atlas; John S. Holloway; T. B. Ryerson; J. Peischl; L. G. Huey; A. T. Case Hanks

During the NOAA Southern Oxidant Study 1999 (SOS1999), Texas Air Quality Study 2000 (TexAQS2000), International Consortium for Atmospheric Research on Transport and Transformation (ICARTT2004), and Texas Air Quality Study 2006 (TexAQS2006) campaigns, airborne measurements of isoprene and monoterpenes were made in the eastern United States and in Texas, and the results are used to evaluate the biogenic emission inventories BEIS3.12, BEIS3.13, MEGAN2, and WM2001. Two methods are used for the evaluation. First, the emissions are directly estimated from the ambient isoprene and monoterpene measurements assuming a well-mixed boundary layer and are compared with the emissions from the inventories extracted along the flight tracks. Second, BEIS3.12 is incorporated into the detailed transport model FLEXPART, which allows the isoprene and monoterpene mixing ratios to be calculated and compared to the measurements. The overall agreement for all inventories is within a factor of 2 and the two methods give consistent results. MEGAN2 is in most cases higher, and BEIS3.12 and BEIS3.13 lower than the emissions determined from the measurements. Regions with clear discrepancies are identified. For example, an isoprene hot spot to the northwest of Houston, Texas, was expected from BEIS3 but not observed in the measurements. Interannual differences in emissions of about a factor of 2 were observed in Texas between 2000 and 2006. Copyright 2010 by the American Geophysical Union.


Environmental Science & Technology | 2015

Formation of Low Volatility Organic Compounds and Secondary Organic Aerosol from Isoprene Hydroxyhydroperoxide Low-NO Oxidation.

Jordan E. Krechmer; Matthew M. Coggon; Paola Massoli; Tran B. Nguyen; John D. Crounse; Weiwei Hu; Douglas A. Day; Geoffrey S. Tyndall; Daven K. Henze; Jean C. Rivera-Rios; J. B. Nowak; Joel R. Kimmel; Roy L. Mauldin; Harald Stark; John T. Jayne; Mikko Sipilä; Heikki Junninen; Jason M. St. Clair; Xuan Zhang; Philip A. Feiner; Li Zhang; David O. Miller; William H. Brune; Frank N. Keutsch; Paul O. Wennberg; John H. Seinfeld; Douglas R. Worsnop; Jose L. Jimenez; Manjula R. Canagaratna

Gas-phase low volatility organic compounds (LVOC), produced from oxidation of isoprene 4-hydroxy-3-hydroperoxide (4,3-ISOPOOH) under low-NO conditions, were observed during the FIXCIT chamber study. Decreases in LVOC directly correspond to appearance and growth in secondary organic aerosol (SOA) of consistent elemental composition, indicating that LVOC condense (at OA below 1 μg m(-3)). This represents the first simultaneous measurement of condensing low volatility species from isoprene oxidation in both the gas and particle phases. The SOA formation in this study is separate from previously described isoprene epoxydiol (IEPOX) uptake. Assigning all condensing LVOC signals to 4,3-ISOPOOH oxidation in the chamber study implies a wall-loss corrected non-IEPOX SOA mass yield of ∼4%. By contrast to monoterpene oxidation, in which extremely low volatility VOC (ELVOC) constitute the organic aerosol, in the isoprene system LVOC with saturation concentrations from 10(-2) to 10 μg m(-3) are the main constituents. These LVOC may be important for the growth of nanoparticles in environments with low OA concentrations. LVOC observed in the chamber were also observed in the atmosphere during SOAS-2013 in the Southeastern United States, with the expected diurnal cycle. This previously uncharacterized aerosol formation pathway could account for ∼5.0 Tg yr(-1) of SOA production, or 3.3% of global SOA.


Geophysical Research Letters | 2001

In‐situ measurement of atmospheric NO3 and N2O5 via cavity ring‐down spectroscopy

Steven S. Brown; Harald Stark; Steven J. Ciciora; A. R. Ravishankara

We report the application of cavity ring-down spectroscopy (CaRDS), a high-sensitivity absorption technique, to the in-situ detection of both NO3 and N2O5 in ambient air. The detection limit for NO3, measuring absorption in its strong, 662-nm band, is 0.3 pptv at STP (50 s integration time). Heating the air flow through the inlet thermally dissociates N2O5 to yield NO3, whose detection gives the ambient concentration of N2O5. The instrument was successfully field tested in March–April, 2001 at a site in the tropospheric boundary layer in Boulder, Colorado. This study is the first fast-response (5s-1 min), in-situ detection of NO3. It is also the first in-situ detection of N2O5 and the first observation of this species in the troposphere. Both NO3 and N2O5 showed considerable temporal variability, highlighting the need for a fast-response instrument.


Geophysical Research Letters | 2015

Estimating the contribution of organic acids to northern hemispheric continental organic aerosol

Reddy L. N. Yatavelli; Claudia Mohr; Harald Stark; Douglas A. Day; Samantha L. Thompson; Felipe D. Lopez-Hilfiker; Pedro Campuzano-Jost; Brett B. Palm; A. Vogel; Thorsten Hoffmann; Liine Heikkinen; Mikko Äijälä; Nga L. Ng; Joel R. Kimmel; Manjula R. Canagaratna; Mikael Ehn; Heikki Junninen; Michael J. Cubison; Tuukka Petäjä; Markku Kulmala; John T. Jayne; Douglas R. Worsnop; Jose L. Jimenez

Using chemical ionization mass spectrometry to detect particle-phase acids (acid-CIMS) and aerosol mass spectrometry (AMS) measurements from Colorado, USA, and two studies in Hyytiala, Finland, we quantify the fraction of organic aerosol (OA) mass that is composed of molecules with acid functional groups (facid). Molecules containing one or more carboxylic acid functionality contributed approximately 29% (45-51%) of the OA mass in Colorado (Finland). Organic acid mass concentration correlates well with AMS m/z 44 (primarily CO2+), a commonly used marker for highly oxidized aerosol. Using the average empirical relationship between AMS m/z 44 and organic acids in these three studies, together with m/z 44 data from 29 continental northern hemispheric (NH) AMS datasets, we estimate that molecules containing carboxylic acid functionality constitute on average 28% (range 10-50%) of NH continental OA mass with typically higher values at rural/remote sites and during summer and lower values at urban sites and during winter.


Physical Chemistry Chemical Physics | 2005

Quantum yields of OH, HO2 and NO3 in the UV photolysis of HO2NO2

Elena Jiménez; Tomasz Gierczak; Harald Stark; James B. Burkholder; A. R. Ravishankara

Quantum yields, phi, of OH and HO2 in the ultraviolet photolysis of HO2NO2 (peroxynitric acid, PNA) at 193 and 248 nm and that of NO3 at 193, 248 and 308 nm are reported. Quantum yields were measured using pulsed excimer laser photolysis combined with pulsed laser induced fluorescence (PLIF) detection of OH radicals and cavity ring-down (CRD) detection of NO3 radicals. HO2 radicals were quantified by converting them to OH via the HO2 + NO --> OH + NO2 reaction and detecting OH. The quantum yields obtained at 296 K are: phi193 nm(OH) = 0.21 +/- 0.12, phi248 nm(OH) = 0.085 +/- 0.08, phi193 nm(HO2) = 0.56 +/- 0.09, phi248 nm(HO2) = 0.89 +/- 0.26, phi193 nm(NO3) = 0.35 +/- 0.09, phi248 nm(NO3) = 0.08 +/- 0.04 and phi308 nm(NO3) = 0.05 +/- 0.02. The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors. Our results are compared with the previous quantum yield measurements of OH (MacLeod et al., J. Geophys. Res., 1988, 93, 3813) and NO2 (Roehl et al., 2001, J. Phys. Chem., 105, 1592) at 248 nm and the discrepancies are discussed. The rate coefficients at 298 K for reactions of OH with HO2NO2, H2O2, HNO3 and NO are also reported.


Physical Chemistry Chemical Physics | 2006

Absorption cross sections for the Ã2A″ (0,90,0) ← 2A′ (0,01,0) band of the HCO radical

Jonathan E. Flad; Steven S. Brown; James B. Burkholder; Harald Stark; A. R. Ravishankara

Absorption cross sections for the A 2A″ (0,90,0) ← 2A′ (0,01,0) band of HCO were determined at 295 K using pulsed laser photolysis combined with cavity ring-down spectroscopy. Formyl radicals (HCO) were produced from the reaction of atomic chlorine, generated by photolysis of Cl2 at 335 nm, with formaldehyde. The concentration of HCO was calibrated using two independent photochemical methods. The peak cross section of the P(8) line was determined to be (1.98 ± 0.36) × 10−18 cm2, and the intensity of the entire band was normalized to this line. The quoted 2σ uncertainty includes estimated systematic errors. Comparisons to previously reported values of HCO cross sections in this band are discussed.


Environmental Science & Technology | 2017

Impact of Thermal Decomposition on Thermal Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility Distributions of Organic Species

Harald Stark; Reddy L. N. Yatavelli; Samantha L. Thompson; Hyungu Kang; Jordan E. Krechmer; Joel R. Kimmel; Brett B. Palm; Weiwei Hu; Patrick L. Hayes; Douglas A. Day; Pedro Campuzano-Jost; Manjula R. Canagaratna; John T. Jayne; Douglas R. Worsnop; Jose L. Jimenez

We present results from a high-resolution chemical ionization time-of-flight mass spectrometer (HRToF-CIMS), operated with two different thermal desorption inlets, designed to characterize the gas and aerosol composition. Data from two field campaigns at forested sites are shown. Particle volatility distributions are estimated using three different methods: thermograms, elemental formulas, and measured partitioning. Thermogram-based results are consistent with those from an aerosol mass spectrometer (AMS) with a thermal denuder, implying that thermal desorption is reproducible across very different experimental setups. Estimated volatilities from the detected elemental formulas are much higher than from thermograms since many of the detected species are thermal decomposition products rather than actual SOA molecules. We show that up to 65% of citric acid decomposes substantially in the FIGAERO-CIMS, with ∼20% of its mass detected as gas-phase CO2, CO, and H2O. Once thermal decomposition effects on the detected formulas are taken into account, formula-derived volatilities can be reconciled with the thermogram method. The volatility distribution estimated from partitioning measurements is very narrow, likely due to signal-to-noise limits in the measurements. Our findings indicate that many commonly used thermal desorption methods might lead to inaccurate results when estimating volatilities from observed ion formulas found in SOA. The volatility distributions from the thermogram method are likely the closest to the real distributions.

Collaboration


Dive into the Harald Stark's collaboration.

Top Co-Authors

Avatar

A. R. Ravishankara

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Steven S. Brown

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

F. C. Fehsenfeld

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

William C. Kuster

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jose L. Jimenez

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Carsten Warneke

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

T. S. Bates

Joint Institute for the Study of the Atmosphere and Ocean

View shared research outputs
Top Co-Authors

Avatar

J. Peischl

Cooperative Institute for Research in Environmental Sciences

View shared research outputs
Top Co-Authors

Avatar

Stuart Brown

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Patricia K. Quinn

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge