Harald Stephan
University of Duisburg-Essen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harald Stephan.
Nature Genetics | 2015
Alexander Schramm; Johannes Köster; Yassen Assenov; Kristina Althoff; Martin Peifer; Ellen Mahlow; Andrea Odersky; Daniela Beisser; Corinna Ernst; Anton Henssen; Harald Stephan; Christopher Schröder; Lukas C. Heukamp; Anne Engesser; Yvonne Kahlert; Jessica Theissen; Barbara Hero; Frederik Roels; Janine Altmüller; Peter Nürnberg; Kathy Astrahantseff; Christian Gloeckner; Katleen De Preter; Christoph Plass; Sangkyun Lee; Holger N. Lode; Kai Oliver Henrich; Moritz Gartlgruber; Frank Speleman; Peter Schmezer
Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.
Oncogene | 2005
Corinna Grasemann; Sandrine Gratias; Harald Stephan; Andreas Schüler; Alexander Schramm; Ludger Klein-Hitpass; Harald Rieder; Stephanie Schneider; Ferdinand Kappes; Angelika Eggert; Dietmar R. Lohmann
The paediatric eye tumour retinoblastoma is initiated by inactivation of RB1, a tumour suppressor on chromosome 13q. In addition to RB1 loss, many retinoblastomas show other genetic alterations including gains on chromosomes 6p21–pter and 1q31–q32. Recently, the minimal region of gains on chromosome 6 was narrowed to band p22. We examined genomic gains and expression changes in primary retinoblastomas to identify potential target genes in 6p22. Quantitative multiplex PCR detected copy numbers ⩾3 in 25 (33%) tumours and no gains in 31 of 76 (40%) tumours. The remaining 20 (26%) samples showed gains only at some loci, most often including E2F3 and DEK in 6p22.3. Analysis of RNA from 21 primary retinoblastomas showed that expression levels of these and some other genes in 6p22 correspond to DNA gains. However, KIF 13A, a reported candidate oncogene on 6p, was expressed at low levels or absent. Clinical manifestation of tumours with gains at all 6p22 loci was distinct in that distribution of age at diagnosis was markedly shifted to older age compared to tumours with no or partial gains. In summary, our results suggest that DEK and E2F3 are potential targets of 6p gains in retinoblastoma.
International Journal of Cancer | 2005
Sandrine Gratias; Andreas Schüler; Ludger Klein‑Hitpass; Harald Stephan; Harald Rieder; Stephanie Schneider; Bernhard Horsthemke; Dietmar R. Lohmann
Many retinoblastomas (Rbs) show genomic alterations in addition to mutational loss of both normal RB1 alleles. The most frequent of these changes are gains on chromosomes 1q and 6p and losses on 16q. To identify the genes targeted by gains on chromosome 1q, we used quantitative‐multiplex PCR to determine DNA copy number changes in 76 primary tumors and 6 Rb cell lines. In addition, in 21 of these tumors, gene expression was analyzed by cDNA microarray hybridization. Increased copy numbers of loci on chromosome 1q were present in 34 (45%) primary tumors and in all 6 cell lines. Two regions of gain emerged, one in 1q32 and another in 1q21. Tumors with 1q gains showed higher RNA expression of several genes in these 2 regions. The clinical manifestation of tumors with and without gains was similar with regard to many aspects, including size, necrosis and calcification. However, the distribution of age at diagnosis was remarkably distinct, with earlier diagnosis in tumors without gains. This suggests that these tumors either are initiated earlier or grow faster than tumors with gains. This association with clinical manifestation indicates that gains on 1q are significant for the biology of Rb. The genes on 1q with copy number gains and overexpression are candidates that need to be tested for their individual contribution to the progression of Rb.
Investigative Ophthalmology & Visual Science | 2008
Harald Stephan; Re´ka Boeloeni; Angelika Eggert; Norbert Bornfeld; Andreas Schueler
PURPOSE In contrast to the excellent survival rates of the malignant childhood tumor retinoblastoma (RB), morbidity is high in patients with this disease because of the enucleation or loss of retinal areas caused by current bulb-saving therapies. The authors aimed to preclinically assess the effects of photochemotherapy using second-generation photochemotherapeutics as a prerequisite to develop a promising therapeutic alternative. This therapy implies intravenous application of a photosensitizer activated locally by light of the appropriate wavelength. Activation leads to the formation of free radicals, vascular occlusion, and death of affected cells in the area of irradiation. The photosensitizer verteporfin is approved for the therapy of neovascularizations, such as age-related maculopathy. METHODS The uptake of verteporfin in RB cell lines was investigated. Established RB cell lines, an RB subline resistant to etoposide, and dissociated cells from a primary RB were incubated with verteporfin and irradiated with activating laser light. Proliferation was measured at different time points after application. RESULTS All five RB cell lines investigated incorporated verteporfin, and nanomolar concentrations were sufficient for effective killing. At lower doses, surviving cells started to proliferate again after several days, but verteporfin 50 ng/mL and 100 J/cm(2) were sufficient for irreversible killing. High verteporfin concentrations caused cell death with little to no irradiation. Etoposide-resistant cells and primary tumor cells had a comparable susceptibility to photodynamic therapy (PDT) as established parental cell lines. CONCLUSIONS PDT using verteporfin efficiently kills chemotherapy-resistant and nonresistant retinoblastoma cell lines and primary tumor cells in vitro, and it warrants further preclinical evaluation as a therapeutic option for the treatment of retinoblastoma.
Pediatric Blood & Cancer | 2008
Harald Stephan; Johannes L. Zakrzewski; Réka Bölöni; Corinna Grasemann; Dietmar R. Lohmann; Angelika Eggert
Neurotrophin receptor signaling regulates proliferation, differentiation and death of neuronal cells. Expression of Trk receptors has been implicated in the pathogenesis and prognosis of embryonal tumors, including neuroblastoma, nephroblastoma, and medulloblastoma.
Klinische Padiatrie | 2013
Jh Schulte; S. Schulte; Lukas C. Heukamp; Kathy Astrahantseff; Harald Stephan; Matthias Fischer; Alexander Schramm; Angelika Eggert
Treatment for neuroblastoma, the most common extracranial childhood tumor, spans a broad range of aggressiveness that mirrors the risk profiles of disease subtypes, with high-risk neuroblastoma still presenting a clinical challenge. Currently, most patients with relapsed neuro-blastoma die of disease and present a major challenge for treatment. New therapeutic options are urgently needed to improve patient survival. Activating mutations in the gene encoding the anaplastic lymphoma kinase (ALK) remain the most frequent druggable mutations identified in neuroblastomas to date. Preclinical data support an oncogene addiction of neuroblastoma cells to mutated ALK and demonstrate that ALK inhibitory therapy strongly combats tumor models. Most recently, pediatric phase I testing has been completed for the first approved ALK inhibitor, Crizotinib, showing very encouraging antitumoral results in neuroblastoma patients. Subsequently, an international phase I study with the second generation ALK inhibitor, LDK-378, will be launched that makes ALK inhibitory therapy also available to pediatric patients in Germany.
International Journal of Cancer | 2015
Theresa Thor; Annette Künkele; Kristian W. Pajtler; Annika K. Wefers; Harald Stephan; Pieter Mestdagh; Lukas C. Heukamp; Wolfgang Hartmann; Jo Vandesompele; Natalie Sadowski; Lore Becker; Lillian Garrett; Sabine M. Hölter; Marion Horsch; Julia Calzada-Wack; Tanja Klein-Rodewald; Ildiko Racz; Andreas Zimmer; Johannes Beckers; Frauke Neff; Thomas Klopstock; Pasqualino De Antonellis; Massimo Zollo; Wolfgang Wurst; Helmut Fuchs; Valérie Gailus-Durner; Ulrich Schüller; Martin Hrabě de Angelis; Angelika Eggert; Alexander Schramm
Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR‐34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR‐34a in vivo. We generated mice with a constitutive deletion of the miR‐34a gene. These mice were devoid of mir‐34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR‐34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re‐expression of miR‐34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR‐34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR‐34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR‐34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR‐34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR‐34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re‐express miR‐34a in tumors could, therefore, represent an efficient therapeutic option.
Genes, Chromosomes and Cancer | 2011
Sebastian Gustmann; Ludger Klein-Hitpass; Harald Stephan; Susanne Weber; Norbert Bornfeld; Marc Kaulisch; Dietmar R. Lohmann; Nicole Dünker
In addition to mutations in both alleles of the retinoblastoma gene (RB1) alleles, retinoblastomas frequently show additional alterations including loss of chromosome arm 16q. In a previous study, the presence of 16q alterations was found to be associated with diffuse vitreous seeding of this tumor. This growth pattern is clinically important as it determines therapeutic decisions. The present study was designed to test this association and to narrow down the list of candidate genes in the minimal region of genomic loss on chromosome arm 16q. Our data confirm the association of 16q loss and diffuse vitreous seeding and define a minimal region of genomic loss of 6.6 Mb on 16q containing 86 known genes. As retinoblastoma is an embryonic tumor, we assumed that any gene relevant for its progression is likely to show regulated expression during retinogenesis. Microarray expression analysis of RNA from a continuous developmental series of murine retinas identified murine orthologs with regulated expression and these data helped to narrow the number of candidate genes in minimal region to 35. Analysis of gene expression in retinoblastomas with and without the loss of heterozygosity (LOH) on chromosome 16q further reduced this number to 26 candidate genes. One of these genes is cadherin 13 (CDH13) and notably, downregulation of CHD13 has previously been associated with poorer prognosis in various other cancers.
PLOS ONE | 2016
Jan Große-Kreul; Maike Busch; Claudia Winter; Stefanie Pikos; Harald Stephan; Nicole Dünker
Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma.
International Journal of Cancer | 2017
Maike Busch; Jan Große-Kreul; Janina Jasmin Wirtz; Manfred Beier; Harald Stephan; Brigitte Royer-Pokora; Klaus A. Metz; Nicole Dünker
Trefoil factor family (TFF) peptides have been shown to play a pivotal role in oncogenic transformation, tumorigenesis and metastasis by changing cell proliferation, apoptosis, migration and invasion behavior of various cancer cell lines. In the study presented, we investigated the effect of TFF1 overexpression on cell growth, viability, migration and tumorigenicity of different retinoblastoma (RB) cell lines. Transient TFF1 overexpression significantly increases RB cell apoptosis levels. Stable, lentiviral TFF1 overexpression likewise decreases RB cell viability, proliferation and growth and significantly increases apoptosis as revealed by WST‐1 assays, BrdU and DAPI cell counts. TFF1‐induced apoptosis is executed via cleaved caspase‐3 activation as revealed by caspase blockage experiments and caspase‐3 immunocytochemistry. Results from pG13‐luciferase reporter assays and Western blot analyses indicate that TFF1‐induced apoptosis is mediated through transcriptional activity of p53 with concurrently downregulated miR‐18a expression. In ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF1 overexpression significantly decreases the size of tumors forming from Y79 and RB355 cells and reduces the migration potential of RB355 cells. Differentially expressed genes and pathways involved in cancer progression were identified after TFF1 overexpression in Y79 cells by gene expression array analysis, underlining the effects on reduced tumorigenicity. TFF1 knockdown in RBL30 cells revealed caspase‐3/7‐independent apoptosis induction, but no changes on cell proliferation level. In summary, the in vitro and in vivo data demonstrate for the first time a tumor suppressor function of TFF1 in RB cells which is at least partly mediated by p53 activation and miR‐18a downregulation.