Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maike Busch is active.

Publication


Featured researches published by Maike Busch.


Human Molecular Genetics | 2010

Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm

Brigitte Royer-Pokora; Maike Busch; Manfred Beier; Constanze Duhme; Carmen de Torres; Jaume Mora; Arthur Brandt; Hans-Dieter Royer

Wilms tumors (WTs) are genetically heterogeneous kidney tumors whose cells of origin are unknown. Tumors with WT1 mutations and concomitant loss of the wild-type allele represent a distinct subgroup, frequently associated with mutations in CTNNB1. Here, we describe the establishment and characterization of long-term cell cultures derived from five individual WTs with WT1 mutations. Three of these tumor cell lines also had CTNNB1 mutations and an activated canonical Wnt signaling pathway as measured by beta-catenin/T cell-specific transcription factor (TCF) transcriptional activity. Four of the five Wilms cell lines had a stable normal karyotype for at least 25 passages, and four lines showed loss of heterozygosity of chromosome 11p due to mitotic recombination in 11p11. Gene expression profiling revealed that the WT cell lines are highly similar to human mesenchymal stem cells (MSCs) and FACS analysis demonstrated the expression of MSC-specific surface proteins CD105, CD90 and CD73. The stem cell like nature of the WT cells is further supported by their adipogenic, chondrogenic, osteogenic and myogenic differentiation potentials. By generating multipotent mesenchymal precursors from paraxial mesoderm (PAM) in tissue culture using embryonal stem cells, gene expression profiles of PAM and MSCs were described. Using these published gene sets, we found coexpression of a large number of genes in WT cell lines, PAM and MSCs. Lineage plasticity is indicated by the simultaneous expression of genes from the mesendodermal and neuroectodermal lineages. We conclude that WTs with WT1 mutations have specific traits of PAM, which is the source of kidney stromal cells.


Human Molecular Genetics | 2014

Classification of a frameshift/extended and a stop mutation in WT1 as gain of function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation

Maike Busch; Heinrich Schwindt; Artur Brandt; Manfred Beier; Nicole Görldt; Paul J. Romaniuk; Eneda Toska; Stefan G.E. Roberts; Hans-Dieter Royer; Brigitte Royer-Pokora

The WT1 gene encodes a zinc finger transcription factor important for normal kidney development. WT1 is a suppressor for Wilms tumour development and an oncogene for diverse malignant tumours. We recently established cell lines from primary Wilms tumours with different WT1 mutations. To investigate the function of mutant WT1 proteins, we performed WT1 knockdown experiments in cell lines with a frameshift/extension (p.V432fsX87 = Wilms3) and a stop mutation (p.P362X = Wilms2) of WT1, followed by genome-wide gene expression analysis. We also expressed wild-type and mutant WT1 proteins in human mesenchymal stem cells and established gene expression profiles. A detailed analysis of gene expression data enabled us to classify the WT1 mutations as gain-of-function mutations. The mutant WT1Wilms2 and WT1Wilms3 proteins acquired an ability to modulate the expression of a highly significant number of genes from the G2/M phase of the cell cycle, and WT1 knockdown experiments showed that they are required for Wilms tumour cell proliferation. p53 negatively regulates the activity of a large number of these genes that are also part of a core proliferation cluster in diverse human cancers. Our data strongly suggest that mutant WT1 proteins facilitate expression of these cell cycle genes by antagonizing transcriptional repression mediated by p53. We show that mutant WT1 can physically interact with p53. Together the findings show for the first time that mutant WT1 proteins have a gain-of-function and act as oncogenes for Wilms tumour development by regulating Wilms tumour cell proliferation.


Cellular Physiology and Biochemistry | 2014

Epigenetic Control of Trefoil Factor Family (TFF) Peptide Expression in Human Retinoblastoma Cell Lines

Claudia Philippeit; Maike Busch; Nicole Dünker

Background: Recent studies demonstrated that epigenetic mechanisms are involved in the regulation of trefoil factor family (TFF) peptide expression in cancer. In human tissues with endogenous TFF1, TFF2 or TFF3 gene expression, the corresponding promoter is unmethylated and in organs without TFF expression, the promoter of the three genes is highly methylated. Methods: Retinoblastoma (Rb) cell lines were treated with the DNA methyltransferase inhibitor 5-Aza-2`deoxycytidine (5-Aza-dC), the histone deacetylase inhibitor 4-Phenylbutyric acid (PBA) or both and analyzed for changes (i) in TFF mRNA expression by Real-time PCR and (ii) in the methylation status of the TFF promoters by genomic bisulfite sequencing. Results: The degree of promoter methylation correlates with endogenous TFF expression in the retinoblastoma cell lines analyzed. Nearly all Rb cell lines exhibiting high endogenous TFF1 expression displayed low methylation of the CpGs in the corresponding promoter region. Low expression of TFF3 in Rb cell lines is linked with high density methylation of the TFF3 promoter. 5-Aza-dC treatment induced TFF1 and TFF3 expression in nearly all cell lines investigated and combined treatment with PBA further increased this effect. The number of methylated CpG dinucleotides of the TFF promoter is clearly reduced upon treatment with 5-Aza-dC and combined treatment with PBA further extended the degree of demethylation. Conclusion: Our data clearly show that the expression of TFF3 in retinoblastoma cell lines is epigenetically regulated, whereas the level of TFF1 and TFF2 seems to be regulated by other or additional mechanisms.


Biomolecular Concepts | 2015

Trefoil factor family peptides - friends or foes?

Maike Busch; Nicole Dünker

Abstract Trefoil factor family (TFF) peptides are a group of molecules bearing a characteristic three-loop trefoil domain. They are mainly secreted in mucous epithelia together with mucins but are also synthesized in the nervous system. For many years, TFF peptides were only known for their wound healing and protective function, e.g. in epithelial protection and restitution. However, experimental evidence has emerged supporting a pivotal role of TFF peptides in oncogenic transformation, tumorigenesis and metastasis. Deregulated expression of TFF peptides at the gene and protein level is obviously implicated in numerous cancers, and opposing functions as oncogenes and tumor suppressors have been described. With regard to the regulation of TFF expression, epigenetic mechanisms as well as the involvement of various miRNAs are new, promising aspects in the field of cancer research. This review will summarize current knowledge about the expression and regulation of TFF peptides and the involvement of TFF peptides in tumor biology and cancerogenesis.


PLOS ONE | 2016

Forced Trefoil Factor Family Peptide 3 (TFF3) Expression Reduces Growth, Viability, and Tumorigenicity of Human Retinoblastoma Cell Lines.

Jan Große-Kreul; Maike Busch; Claudia Winter; Stefanie Pikos; Harald Stephan; Nicole Dünker

Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma.


International Journal of Cancer | 2017

Reduction of the tumorigenic potential of human retinoblastoma cell lines by TFF1 overexpression involves p53/caspase signaling and miR-18a regulation

Maike Busch; Jan Große-Kreul; Janina Jasmin Wirtz; Manfred Beier; Harald Stephan; Brigitte Royer-Pokora; Klaus A. Metz; Nicole Dünker

Trefoil factor family (TFF) peptides have been shown to play a pivotal role in oncogenic transformation, tumorigenesis and metastasis by changing cell proliferation, apoptosis, migration and invasion behavior of various cancer cell lines. In the study presented, we investigated the effect of TFF1 overexpression on cell growth, viability, migration and tumorigenicity of different retinoblastoma (RB) cell lines. Transient TFF1 overexpression significantly increases RB cell apoptosis levels. Stable, lentiviral TFF1 overexpression likewise decreases RB cell viability, proliferation and growth and significantly increases apoptosis as revealed by WST‐1 assays, BrdU and DAPI cell counts. TFF1‐induced apoptosis is executed via cleaved caspase‐3 activation as revealed by caspase blockage experiments and caspase‐3 immunocytochemistry. Results from pG13‐luciferase reporter assays and Western blot analyses indicate that TFF1‐induced apoptosis is mediated through transcriptional activity of p53 with concurrently downregulated miR‐18a expression. In ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF1 overexpression significantly decreases the size of tumors forming from Y79 and RB355 cells and reduces the migration potential of RB355 cells. Differentially expressed genes and pathways involved in cancer progression were identified after TFF1 overexpression in Y79 cells by gene expression array analysis, underlining the effects on reduced tumorigenicity. TFF1 knockdown in RBL30 cells revealed caspase‐3/7‐independent apoptosis induction, but no changes on cell proliferation level. In summary, the in vitro and in vivo data demonstrate for the first time a tumor suppressor function of TFF1 in RB cells which is at least partly mediated by p53 activation and miR‐18a downregulation.


PLOS ONE | 2015

Additive Effects of Retinoic Acid (RA) and Bone Morphogenetic Protein 4 (BMP-4) Apoptosis Signaling in Retinoblastoma Cell Lines

Patrick Müller; Rebekka Doliva; Maike Busch; Claudia Philippeit; Harald Stephan; Nicole Dünker

Retinoids have been shown to serve promising therapeutic agents for human cancers, e.g. the treatment of neuroblastoma. Synthetic retinoids, specific for particular retinoic acid (RA) receptors, are tested as new therapy strategies. In the present study, application of recombinant retinoic acid (RA) lowers retinoblastoma (RB) cell viability and induces apoptosis in RB cell lines. Combined treatment of RA and bone morphogenetic protein 4 (BMP-4) increases the pro-apoptotic effect of RA in the RB cells lines WERI-Rb1, Y-79, RB355, RBL-30 and RBL-15, indicating an additive effect. We could show that in WERI-Rb1 cells RA/BMP-4 mediated cell death is at least partially caspase-dependent, whereby RA and BMP-4 additively increased (i) Apaf-1 mRNA levels, (ii) caspase-9 cleavage activity and (iii) the number of activated, cleaved caspase-3 positive cells. Compared to single application of RA and BMP-4, combined RA/BMP-4 treatment significantly augments mRNA levels of the retinoic acid receptors (RARs) RARα and RARß and the retinoic X receptor (RXR) RXRγ suggesting an interaction in the induction of these RA receptor subtypes in WERI-Rb1 cells. Agonist studies revealed that both, RARs and RXRs are involved in RA/BMP-4 mediated apoptosis in WERI-Rb1 retinoblastoma cells. Employing specific RAR subtype antagonists and a RXRß and RXRγ knockdown, we proved that RA/BMP-4 apoptosis signaling in WERI-Rb1 cells requires the RA receptor subtypes RARα, RARß, RXRß and RXRγ. Deciphering signaling mechanisms underlying apoptosis induction of RA and BMP-4 in WERI-Rb1 cells, our study provides useful starting-points for future retinoid-based therapy strategies in retinoblastoma.


Cancer Medicine | 2018

Chemotherapy and terminal skeletal muscle differentiation in WT1-mutant Wilms tumors

Brigitte Royer-Pokora; Manfred Beier; Artur Brandt; Constanze Duhme; Maike Busch; Carmen de Torres; Hans-Dieter Royer; Jaume Mora

Wilms tumors (WT) with WT1 mutations do not respond well to preoperative chemotherapy by volume reduction, suggesting resistance to chemotherapy. The histologic pattern of this tumor subtype indicates an intrinsic mesenchymal differentiation potential. Currently, it is unknown whether cytotoxic treatments can induce a terminal differentiation state as a direct comparison of untreated and chemotherapy‐treated tumor samples has not been reported so far. We conducted gene expression profiling of 11 chemotherapy and seven untreated WT1‐mutant Wilms tumors and analyzed up‐ and down‐regulated genes with bioinformatic methods. Cell culture experiments were performed from primary Wilms tumors and genetic alterations in WT1 and CTNNB1 analyzed. Chemotherapy induced MYF6 165‐fold and several MYL and MYH genes more than 20‐fold and repressed many genes from cell cycle process networks. Viable tumor cells could be cultivated when patients received less than 8 weeks of chemotherapy but not in two cases with longer treatments. In one case, viable cells could be extracted from a lung metastasis occurring after 6 months of intensive chemotherapy and radiation. Comparison of primary tumor and metastasis cells from the same patient revealed up‐regulation of RELN and TBX2, TBX4 and TBX5 genes and down‐regulation of several HOXD genes. Our analyses demonstrate that >8 weeks of chemotherapy can induce terminal myogenic differentiation in WT1‐mutant tumors, but this is not associated with volume reduction. The time needed for all tumor cells to achieve the terminal differentiation state needs to be evaluated. In contrast, prolonged treatments can result in genetic alterations leading to resistance.


American Journal of Medical Genetics Part A | 2013

Evaluation of Chromosome 11p Imbalances in Aniridia and Wilms Tumor Patients

Maike Busch; Barbara Leube; Anne Thiel; Ina Schanze; Manfred Beier; Brigitte Royer-Pokora

Newborn sporadic aniridia patients with an 11p13 deletion including the WT1 gene have an increased risk to develop Wilms tumor. At present a risk for Wilms tumor cannot be estimated in patients with deletions not extending into, but ending close to WT1. Therefore, it is important to determine the distance of deletion endpoints from the WT1 gene and survey these patients for a longer follow‐up time to obtain a more defined risk estimation. Using molecular methods, such as Multiplex Ligation‐dependent Probe Amplification (MLPA), deletion endpoints can be mapped more accurately than with FISH. We describe here the analysis of six aniridia patients, in two of these the deletions extend close to the 3′ end of WT1. At the ages of 3.8 and 4 years they have not developed a Wilms tumor, suggesting a low tumor risk in such patients. In addition we have studied 24 non‐AN cases with a higher likelihood for WT1 alterations with MLPA and found no deletions. In conclusion newborns with aniridia should be studied with molecular methods that can determine deletion endpoints in 11p13 exactly. For a better Wilms tumor risk estimation cases with deletion endpoints close to WT1 should be followed for at least 4–5 years. Furthermore germ line intragenic deletions affecting WT1 in patients with a higher likelihood for a WT1 association, for example, bilateral tumors, genitourinary aberrations, or nephrotic syndrome, were not found in this study, suggesting that deletions are rare events.


Oncology Reports | 2017

Characterization of etoposide- and cisplatin-chemoresistant retinoblastoma cell lines

Maike Busch; David Papior; Harald Stephan; Nicole Dünker

Retinoblastoma (RB) is the most common malignant intraocular tumor in early childhood. Imminent chemotherapy resistance diminishes the clinical-therapeutic options and emphasizes the necessity for new therapeutic approaches. The present study aimed at characterizing and comparing etoposide and cisplatin-resistant human RB cell lines with regard to changes in proliferation and apoptosis levels, anchorage independent growth behavior in vitro as well as tumor formation capacity in vivo. The proliferation rates were significantly increased in the etoposide-resistant RB cell lines Y-79, WERI-Rb1 and RB-355 reflecting significantly higher growth kinetics compared to the parental controls. In line with these findings in in vivo chicken chorioallantoic (CAM) assays, etoposide-resistant cell lines generated significantly increased numbers of tumors with higher tumor weights compared to their parental counterparts. In contrast to etoposide, the cisplatin-resistant RB cell lines Y-79, WERI-Rb1 and RB-355 displayed significantly increased apoptosis rates and reduced proliferation rates resulting in significantly decreased growth kinetics. Tumor formation capacity of cisplatin-resistant cell lines did not significantly change, and in comparison with parental controls cisplatin-resistant Y-79 cells displayed significantly reduced tumor weight. Soft agarose assays indicated that anchorage-independent growth of all chemotherapy-resistant cell lines analyzed was significantly decreased. Summarizing, one can state that etoposide-resistant RB cells behave more aggressively than the tumor cells of origin and potentially represent a risk factor for local relapse, while cisplatin-resistant cells show a significantly decreased tumorigenic potential.

Collaboration


Dive into the Maike Busch's collaboration.

Top Co-Authors

Avatar

Nicole Dünker

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Manfred Beier

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harald Stephan

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Claudia Philippeit

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Artur Brandt

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Constanze Duhme

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Jan Große-Kreul

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar

Klaus A. Metz

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge