Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harihara S. Sundaram is active.

Publication


Featured researches published by Harihara S. Sundaram.


Langmuir | 2011

A general approach to controlling the surface composition of poly(ethylene oxide)-based block copolymers for antifouling coatings.

Michael D. Dimitriou; Zhaoli Zhou; Hee-Soo Yoo; John A. Finlay; Gemma Cone; Harihara S. Sundaram; Nathaniel A. Lynd; Katherine P. Barteau; Luis M. Campos; Daniel Fischer; Maureen E. Callow; Christopher K. Ober; Craig J. Hawker; Edward J. Kramer

To control the surface properties of a polystyrene-block-poly(ethylene oxide) diblock copolymer, perfluorinated chemical moieties were specifically incorporated into the block copolymer backbone. A polystyrene-block-poly[(ethylene oxide)-stat-(allyl glycidyl ether)] [PS-b-P(EO-stat-AGE)] statistical diblock terpolymer was synthesized with varying incorporations of allyl glycidyl ether (AGE) in the poly(ethylene oxide) block from 0 to 17 mol %. The pendant alkenes of the AGE repeat units were subsequently functionalized by thiol-ene chemistry with 1H,1H,2H,2H-perfluorooctanethiol, yielding fluorocarbon-functionalized AGE (fAGE) repeat units. (1)H NMR spectroscopy and size-exclusion chromatography indicated well-defined structures with complete functionalization of the pendant alkenes. The surfaces of the polymer films were characterized after spray coating by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS), showing that the P(EO-stat-fAGE) block starts to compete with polystyrene to populate the surface after only 1 mol % incorporation of fAGE. Increasing the incorporation of fAGE led to an increased amount of perfluorocarbons on the surface and a decrease in the concentration of PS. At a fAGE incorporation of 8 mol %, PS was not detected at the surface, as measured by NEXAFS spectroscopy. Water contact angles measured by the captive-air-bubble technique showed the underwater surfaces to be dynamic, with advancing and receding contact angles varying by >20°. Protein adsorption studies demonstrated that the fluorinated surfaces effectively prevent nonspecific binding of proteins relative to an unmodified PS-b-PEO diblock copolymer. In biological systems, settlement of spores of the green macroalga Ulva was significantly lower for the fAGE-incorporated polymers compared to the unmodified diblock and a polydimethylsiloxane elastomer standard. Furthermore, the attachment strength of sporelings (young plants) of Ulva was also reduced for the fAGE-containing polymers, affirming their potential as fouling-release coatings.


Langmuir | 2010

Amphiphilic Surface Active Triblock Copolymers with Mixed Hydrophobic and Hydrophilic Side Chains for Tuned Marine Fouling-Release Properties

Daewon Park; Craig J. Weinman; John A. Finlay; Benjamin R. Fletcher; Marvin Y. Paik; Harihara S. Sundaram; Michael D. Dimitriou; Karen E. Sohn; Maureen E. Callow; Dale L. Handlin; Carl L. Willis; Daniel Fischer; Edward J. Kramer; Christopher K. Ober

Two series of amphiphilic triblock surface active block copolymers (SABCs) were prepared through chemical modification of two polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene ABC triblock copolymer precursors. The methyl ether of poly(ethylene glycol) [M(n) approximately 550 g/mol (PEG550)] and a semifluorinated alcohol (CF(3)(CF(2))(9)(CH(2))(10)OH) [F10H10] were attached at different molar ratios to impart both hydrophobic and hydrophilic groups to the isoprene segment. Coatings on glass slides consisting of a thin layer of the amphiphilic SABC deposited on a thicker layer of an ABA polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene thermoplastic elastomer were prepared for biofouling assays with algae. Dynamic water contact angle analysis, X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) measurements were utilized to characterize the surfaces. Clear differences in surface structure were realized as the composition of attached side chains was varied. In biofouling assays, the settlement (attachment) of zoospores of the green alga Ulva was higher for surfaces incorporating a large proportion of the hydrophobic F10H10 side chains, while surfaces with a large proportion of the PEG550 side chains inhibited settlement. The trend in attachment strength of sporelings (young plants) of Ulva did not show such an obvious pattern. However, amphiphilic SABCs incorporating a mixture of PEG550 and F10H10 side chains performed the best. The number of cells of the diatom Navicula attached after exposure to flow decreased as the content of PEG550 to F10H10 side chains increased.


ACS Applied Materials & Interfaces | 2014

One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces.

Harihara S. Sundaram; Xia Han; Ann K. Nowinski; Jean-Rene Ella-Menye; Collin Wimbish; Patrick Marek; Kris Senecal; Shaoyi Jiang

Zwitterionic sulfobetaine polymers with a catechol chain end (DOPA-PSB) were applied to a variety of hydrophobic polymer sheets and fibers. In addition, a silica surface was tested as a representative hydrophilic substrate. The polymer-coated surfaces showed significantly lower fouling levels than uncoated controls. Because of the anti-polyelectrolyte nature of sulfobetaine zwitterionic polymers, the effect of salt concentration on the coating solutions and the quality of the polymer coating against fouling are studied. The coating method involves only water-based solutions, which is compatible with most surfaces and is environmentally friendly. To demonstrate the versatility of the reported method, we evaluated the fouling levels of the polymer coating on commonly used polymeric surfaces such as polypropylene (PP), polydimethylsiloxane (PDMS), polystyrene (PS), nylon, polyvinyl chloride (PVC), and poly(methyl methacrylate) (PMMA).


Biofouling | 2011

Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications

Harihara S. Sundaram; Youngjin Cho; Michael D. Dimitriou; Craig J. Weinman; John A. Finlay; Gemma Cone; Maureen E. Callow; Edward J. Kramer; Christopher K. Ober

Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.


ACS Applied Materials & Interfaces | 2011

Fluorinated Amphiphilic Polymers and Their Blends for Fouling-Release Applications: The Benefits of a Triblock Copolymer Surface

Harihara S. Sundaram; Youngjin Cho; Michael D. Dimitriou; John A. Finlay; Gemma Cone; Sam Williams; Dale L. Handlin; Joseph Gatto; Maureen E. Callow; Edward J. Kramer; Christopher K. Ober

Surface active triblock copolymers (SABC) with mixed polyethylene glycol (PEG) and two different semifluorinated alcohol side chains, one longer than the other, were blended with a soft thermoplastic elastomer (TPE), polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS). The surface composition of these blends was probed by X-ray photoelectron spectroscopy (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The surface reconstruction of the coatings in water was monitored qualitatively by dynamic water contact angles in air as well as air bubble contact angle measurements in water. By blending the SABC with SEBS, we minimize the amount of the SABC used while achieving a surface that is not greatly different in composition from the pure SABC. The 15 wt % blends of the SABC with long fluoroalkyl side chains showed a composition close to that of the pure SABC while the SABC with shorter perfluoroakyl side chains did not. These differences in surface composition were reflected in the fouling-release performance of the blends for the algae, Ulva and Navicula.


Chemical Science | 2014

Reversibly switchable polymer with cationic/zwitterionic/anionic behavior through synergistic protonation and deprotonation

Harihara S. Sundaram; Jean-Rene Ella-Menye; Norman D. Brault; Qing Shao; Shaoyi Jiang

A polymer capable of fully and reversibly switching throughout the entire charge regime is highly desirable for many applications such as drug and gene delivery, controlled ion and molecular transport and tunable filtration membranes. It is essential that for biologically relevant applications the polymer needs to be nonfouling. However, conventional nonfouling zwitterionic polymers have a permanently positive quaternary nitrogen center, making it impossible to switch between charges. Here, we present a rationally designed polymer with a tertiary amine and a carboxylic acid, which is capable of reversibly switching among three distinct charged states, viz., cationic, zwitterionic and anionic, and importantly maintaining the zwitterionic state under physiological pH conditions. Oppositely charged proteins adsorbed on a charged surface selectively can be completely removed by switching the surface to the zwitterionic state. We have also found that these two moieties (i.e., a tertiary amine and a carboxylate moiety) stimulate each other synergistically to achieve a strongly zwitterionic state under physiological conditions and to resist non-specific protein adsorption from undiluted blood plasma and serum when they are close to each other.


Biomacromolecules | 2014

A Robust Graft-to Strategy To Form Multifunctional and Stealth Zwitterionic Polymer-Coated Mesoporous Silica Nanoparticles

Yongheng Zhu; Harihara S. Sundaram; Sijun Liu; Lei Zhang; Xuewei Xu; Qiuming Yu; Jiaqiang Xu; Shaoyi Jiang

Mesoporous silica nanoparticles (MSNs) are a new class of carrier materials promising for drug/gene delivery and many other important applications. Stealth coatings are necessary to maintain their stability in complex media. Herein, a biomimetic polymer conjugate containing one ultralow fouling poly(carboxybetaine) (pCBMA) chain and one surface-adhesive catechol (DOPA) residue group was efficiently grafted to the outer surface of SBA-15 type MSNs using a convenient and robust method. The cytotoxicity of SBA-15-DOPA-pCBMAs was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results showed no significant decrease in cell viability at the tested concentration range. Macrophage cell uptake studies revealed that the uptake ratios of SBA-15-DOPA-pCBMAs were much lower than that of parent MSNs. Furthermore, inductively coupled plasma mass spectrometry (ICP-MS) analysis results showed that after SBA-15-DOPA-pCBMAs were conjugated with a targeting cyclo-[Arg-Gly-Asp-d-Tyr-Lys] (cRGD) peptide, uptake by bovine aortic endothelial cells (BAECs) was notably increased. Results indicated that cRGD-functionalized MSNs were able to selectively interact with cells expressing αvβ3 integrin. Thus, MSNs with DOPA-pCBMAs are promising as stealth multifunctional biocarriers for targeted drug delivery or diagnostics.


Biomacromolecules | 2012

Dry film refractive index as an important parameter for ultra-low fouling surface coatings.

Norman D. Brault; Harihara S. Sundaram; Yuting Li; Chun-Jen Huang; Qiuming Yu; Shaoyi Jiang

Here we demonstrate that the film refractive index (RI) can be an even more important parameter than film thickness for identifying nonfouling polymer films to undiluted human blood plasma and serum. The film thickness and RI are two parameters obtained from ellipsometry. Previously, film thickness has been correlated to ultra-low fouling properties. Practically, the film RI can be used to characterize polymer density but is often overlooked. By varying the water content in the surface-initiated atom transfer radical polymerization of zwitterionic carboxybetaine, a minimum of ∼1.5 RI units was necessary to achieve <5 ng/cm(2) of adsorption from undiluted human serum. A model of the film structure versus water content was also developed. These results point to an important parameter and simple approach for identifying surface coatings suitable for real-world applications involving complex media. Therefore, ultra-low fouling using a thin film is possible if it is densely packed.


Advanced Materials Interfaces | 2014

Achieving One-Step Surface Coating of Highly Hydrophilic Poly(Carboxybetaine Methacrylate) Polymers on Hydrophobic and Hydrophilic Surfaces

Harihara S. Sundaram; Xia Han; Ann K. Nowinski; Norman D. Brault; Yuting Li; Jean-Rene Ella-Menye; Kagya A. Amoaka; Keith E. Cook; Patrick Marek; Kris Senecal; Shaoyi Jiang

It is highly desirable to develop a universal nonfouling coating via a simple one-step dip-coating method. Developing such a universal coating method for a hydrophilic polymer onto a variety of surfaces with hydrophobic and hydrophilic properties is very challenging. This work demonstrates a versatile and simple method to attach zwitterionic poly(carboxybetaine methacrylate) (PCB), one of the most hydrophilic polymers, onto both hydrophobic and hydrophilic surfaces to render them nonfouling. This is achieved by the coating of a catechol chain end carboxybetaine methacrylate polymer (DOPA-PCB) assisted by dopamine. The coating process was carried out in water. Water miscible solvents such as methanol and tetrahydrofuran (THF) are added to the coatings if surface wettability is an issue, as for certain hydrophobic surfaces. This versatile coating method was applied to several types of surfaces such as polypropylene (PP), polydimethyl siloxane (PDMS), Teflon, polystyrene (PS), polymethylmethacrylate (PMMA), polyvinyl chloride (PVC) and also on metal oxides such as silicon dioxide.


Biomacromolecules | 2012

Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release.

Youngjin Cho; Harihara S. Sundaram; John A. Finlay; Michael D. Dimitriou; Maureen E. Callow; Edward J. Kramer; Christopher K. Ober

Coatings derived from surface active block copolymers (SABCs) having a combination of hydrophobic aliphatic (linear hydrocarbon or propylene oxide-derived groups) and hydrophilic poly(ethlyene glycol) (PEG) side chains have been developed. The coatings demonstrate superior performance against protein adsorption as well as resistance to biofouling, providing an alternative to coatings containing fluorinated side chains as the hydrophobe, thus reducing the potential environmental impact. The surfaces were examined using dynamic water contact angle, captive air-bubble contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure analysis. The PS(8K)-b-P(E/B)(25K)-b-PI(10K) triblock copolymer precursor (K3) initially dominated the dry surface. In contrast to previous studies with mixed fluorinated/PEG surfaces, these new materials displayed significant surface changes after exposure to water that allowed fouling resistant behavior. PEG groups buried several nanometers below the surface in the dry state were able to occupy the coating surface after placement in water. The resulting surface exhibits a very low contact angle and good antifouling properties that are very different from those of K3. The surfaces are strongly resistant to protein adsorption using bovine serum albumin as a standard protein challenge. Biofouling assays with sporelings of the green alga Ulva and cells of the diatom Navicula showed the level of adhesion was significantly reduced relative to that of a PDMS standard and that of the triblock copolymer precursor of the SABCs.

Collaboration


Dive into the Harihara S. Sundaram's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaoyi Jiang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Finlay

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge