Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harinder Singh Oberoi is active.

Publication


Featured researches published by Harinder Singh Oberoi.


Indian Journal of Microbiology | 2007

Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation

Naresh Sharma; Krishan L Kalra; Harinder Singh Oberoi; Sunil Bansal

A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.


Waste Management | 2011

Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

Harinder Singh Oberoi; Praveen V. Vadlani; Lavudi Saida; Sunil Bansal; Joshua D. Hughes

Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date.


Bioresource Technology | 2011

Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii.

Sandeep Singh Dhaliwal; Harinder Singh Oberoi; Simranjeet Kaur Sandhu; Dhiraj Kumar Nanda; Dinesh Kumar; S. K. Uppal

The thermotolerant yeast strain isolated from sugarcane juice through enrichment technique was identified as a strain of Pichiakudriavzevii (Issatchenkiaorientalis) through molecular characterization. The P. kudriavzevii cells adapted to galactose medium produced about 30% more ethanol from sugarcane juice than the non-adapted cells. The recycled cells could be used for four successive cycles without a significant drop in ethanol production. Fermentation in a laboratory fermenter with galactose adapted P. kudriavzevii cells at 40°C resulted in an ethanol concentration and productivity of 71.9 g L(-1) and 4.0 g L(-1)h(-1), respectively from sugarcane juice composed of about 14% (w/v) sucrose, 2% (w/v) glucose and 1% (w/v) fructose. In addition to ethanol, 3.30 g L(-1) arabitol and 4.19 g L(-1) glycerol were also produced, whereas sorbitol and xylitol were not formed during fermentation. Use of galactose adapted P. kudriavzevii cells for ethanol production from sugarcane juice holds potential for scale-up studies.


Journal of Agricultural and Food Chemistry | 2010

Ethanol Production from Orange Peels: Two-Stage Hydrolysis and Fermentation Studies Using Optimized Parameters through Experimental Design

Harinder Singh Oberoi; Praveen V. Vadlani; Ronald L. Madl; Lavudi Saida; Jithma P. Abeykoon

Orange peels were evaluated as a fermentation feedstock, and process conditions for enhanced ethanol production were determined. Primary hydrolysis of orange peel powder (OPP) was carried out at acid concentrations from 0 to 1.0% (w/v) at 121 degrees C and 15 psi for 15 min. High-performance liquid chromatography analysis of sugars and inhibitory compounds showed a higher production of hydroxymethyfurfural and acetic acid and a decrease in sugar concentration when the acid level was beyond 0.5% (w/v). Secondary hydrolysis of pretreated biomass obtained from primary hydrolysis was carried out at 0.5% (w/v) acid. Response surface methodology using three factors and a two-level central composite design was employed to optimize the effect of pH, temperature, and fermentation time on ethanol production from OPP hydrolysate at the shake flask level. On the basis of results obtained from the optimization experiment and numerical optimization software, a validation study was carried out in a 2 L batch fermenter at pH 5.4 and a temperature of 34 degrees C for 15 h. The hydrolysate obtained from primary and secondary hydrolysis processes was fermented separately employing parameters optimized through RSM. Ethanol yields of 0.25 g/g on a biomass basis (YP/X) and 0.46 g/g on a substrate-consumed basis (YP/S) and a promising volumetric ethanol productivity of 3.37 g/L/h were attained using this process at the fermenter level, which shows promise for further scale-up studies.


Bioresource Technology | 2011

Enhanced ethanol production from Kinnow mandarin (Citrus reticulata) waste via a statistically optimized simultaneous saccharification and fermentation process.

Harinder Singh Oberoi; Praveen V. Vadlani; Ananda Nanjundaswamy; Sunil Bansal; Sandeep Singh; Simranjeet Kaur; Neha Babbar

Dried, ground, and hydrothermally pretreated Kinnow mandarin (Citrus reticulata) waste was used to produce ethanol via simultaneous saccharification and fermentation (SSF). Central composite design was used to optimize cellulase and pectinase concentrations, temperature, and time for SSF. The D-limonene concentration determined with high-performance liquid chromatography (HPLC) for fresh, dried, and pretreated biomass was 0.76%, 0.32%, and 0.09% (v/w), respectively. Design Expert software suggested that the first-order effect of all four factors and the second-order effect of cellulase and pectinase concentrations were significant for ethanol production. The validation experiment using 6 FPU gds(-1) cellulase and 60 IU gds(-1) pectinase at 37 °C for 12 h in a laboratory batch fermenter resulted in ethanol concentration and productivity of 42 g L(-1) and 3.50 g L(-1) h(-1), respectively. Experiments using optimized parameters resulted in an ethanol concentration similar to that predicted by the model equation and also helped reduce fermentation time.


Critical Reviews in Food Science and Nutrition | 2015

Therapeutic and Nutraceutical Potential of Bioactive Compounds Extracted from Fruit Residues

Neha Babbar; Harinder Singh Oberoi; Simranjeet Kaur Sandhu

The growing interest in the substitution of synthetic food antioxidants by natural ones has fostered research in identifying new low-cost antioxidants having commercial potential. Fruits such as mango, banana, and those belonging to the citrus family leave behind a substantial amount of residues in the form of peels, pulp, seeds, and stones. Due to lack of infrastructure to handle a huge quantity of available biomass, lack of processing facilities, and high processing cost, these residues represent a major disposal problem, especially in developing countries. Because of the presence of phenolic compounds, which impart nutraceutical properties to fruit residues, such residues hold tremendous potential in food, pharmaceutical, and cosmetic industries. The biological properties such as anticarcinogenicity, antimutagenicity, antiallergenicity, and antiageing activity have been reported for both natural as well as synthetic antioxidants. Special attention is focused on extraction of bioactive compounds from inexpensive or residual sources. The purpose of this review is to characterize different phenolics present in the fruit residues, discuss the antioxidant potential of such residues and the assays used in determination of antioxidant properties, discuss various methods for efficient extraction of the bioactive compounds, and highlight the importance of fruit residues as potential nutraceutical resources and biopreservatives.


Bioresource Technology | 2012

Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes

Soumen K. Maiti; Y. Lukka Thuyavan; Satyendra Singh; Harinder Singh Oberoi; Gopal P. Agarwal

The main objective of this work was to remove inhibitors and concentrate sugars in hydrolysates obtained from dilute acid-treated rice straw. The Donnan steric pore flow model (DSPM) was applied for membrane characterization and it captured the membrane transport adequately. The polyamide and polyethylene sulfate nanofiltration membranes of 150 Da molecular weight cut-off showed a separation factor of 3 for acetic acid over glucose and xylose and 7 over cellobiose for a simulated mixture at the optimum pH of 3. A separation factor of 3 was also found for the inhibitors hydroxymethyl furfural, ferulic and vanilic acids over sugars. The concentration of rice straw acid hydrolysate by a volume concentration ratio of 4 increased the concentrations of xylose, glucose, arabinose, cellobiose and inhibitor by 100%, 104%, 93%, 151% and 3%, respectively which indicates the membrane can be used for separating the inhibitors from acid-pretreated rice straw hydrolysate while simultaneously concentrating sugars.


International Journal of Green Energy | 2015

A Review on Fuel Ethanol Production From Lignocellulosic Biomass

Neha Srivastava; Rekha Rawat; Harinder Singh Oberoi; Pramod W. Ramteke

The review deals with fuel ethanol production from plant-based lignocellulosic biomass as raw materials. In this article, the technologies for producing fuel ethanol with the main research prospects for improving them are discussed. The complexity in the biomass processing is identified by the analysis of various stages involved in the conversion of lignocellulosic biomass into fermentable sugars. Further, the fermentation processes with its important features are explained based on biomass conversion. Comparative index for different types of biomass for fuel ethanol production is listed. Finally, some concluding remarks on current research regarding the pre-treatment along with biological conversion of biomass into ethanol are presented.


Indian Journal of Microbiology | 2008

Production of β-galactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity

Sunil Bansal; Harinder Singh Oberoi; Gurpreet Singh Dhillon; Ramabhau Tumadu Patil

Whey containing 4.4% (w/v) lactose was inoculated with Kluyveromyces marxianus MTCC 1389 for carrying out studies related to β-galactosidase production. β-galactosidase activity was found to be maximum after 30 h and further incubation resulted in decline in activity. The maximum cell biomass of 2.54 mg mL−1 was observed after 36 h of incubation. Lactose concentration dropped drastically to 0.04 % from 4.40% after 36 h of incubation. Out of the four methods tested for extraction of enzyme, SDS — Chlorofom method was found to be best followed by Toluene — Acetone, sonication and homogenization with glass beads in that order. It could be concluded through this study that SDS — Chloroform is cheap and simple method for enzyme extraction from Kluyveromyces cells, which resulted in higher enzyme activity as compared to the activity observed using the remaining extraction methods. The study could also establish that whey could effectively be utilized for β-galactosidase production thus alleviating water pollution problems caused due to its disposal into the water streams.


Journal of Agricultural and Food Chemistry | 2013

Two-Stage Statistical Medium Optimization for Augmented Cellulase Production via Solid-State Fermentation by Newly Isolated Aspergillus niger HN-1 and Application of Crude Cellulase Consortium in Hydrolysis of Rice Straw

Simranjeet Kaur Sandhu; Harinder Singh Oberoi; Neha Babbar; Kanupriya Miglani; Bhupinder Singh Chadha; Dhiraj Kumar Nanda

Cellulolytic enzyme production by newly isolated Aspergillus niger HN-1 was statistically optimized using Plackett-Burman and central composite design (CCD). Optimum concentrations of 2, 0.40, 0.01, and 0.60 g L (-1) for KH2PO4, urea, trace elements solution, and CaCl2·2H2O, respectively, were suggested by Design-Expert software. The two-stage optimization process led to a 3- and 2-fold increases in the filter paper cellulase (FP) and β-glucosidase activities, respectively. FP, β-glucosidase, endoglucanase, exopolygalaturonase, cellobiohydrolase, xylanase, α-l-arabinofuranosidase, β-xylosidase, and xylan esterase activities of 36.7 ± 1.54 FPU gds(-1), 252.3 ± 7.4 IU gds(-1), 416.3 ± 22.8 IU gds(-1), 111.2 ± 5.4 IU gds(-1), 8.9 ± 0.50 IU gds(-1), 2593.5 ± 78.9 IU gds(-1), 79.4 ± 4.3 IU gds(-1), 180.8 ± 9.3 IU gds(-1), and 288.7 ± 11.8 IU gds(-1), respectively, were obtained through solid-state fermentation during the validation studies. Hydrolysis of alkali-treated rice straw with crude cellulases resulted in about 84% glucan to glucose, 89% xylan to xylose, and 91% arabinan to arabinose conversions, indicating potential for biomass hydrolysis by the crude cellulase consortium obtained in this study.

Collaboration


Dive into the Harinder Singh Oberoi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunil Bansal

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neha Babbar

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinod Kumar Bhargav

Central Institute of Agricultural Engineering

View shared research outputs
Top Co-Authors

Avatar

Baljit Kaur

Guru Nanak Dev University

View shared research outputs
Top Co-Authors

Avatar

Dhiraj Kumar Nanda

National Dairy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dinesh Kumar

Guru Gobind Singh Indraprastha University

View shared research outputs
Top Co-Authors

Avatar

Neha Srivastava

Indian Institute of Technology (BHU) Varanasi

View shared research outputs
Researchain Logo
Decentralizing Knowledge