Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harish Dharuri is active.

Publication


Featured researches published by Harish Dharuri.


Nature Communications | 2015

Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels

Harmen H. M. Draisma; René Pool; Michael Kobl; Rick Jansen; Ann-Kristin Petersen; Anika A.M. Vaarhorst; Idil Yet; Toomas Haller; Ayse Demirkan; Tonu Esko; Gu Zhu; Stefan Böhringer; Marian Beekman; Jan B. van Klinken; Werner Römisch-Margl; Cornelia Prehn; Jerzy Adamski; Anton J. M. de Craen; Elisabeth M. van Leeuwen; Najaf Amin; Harish Dharuri; Harm-Jan Westra; Lude Franke; Eco J. C. de Geus; Jouke-Jan Hottenga; Gonneke Willemsen; Anjali K. Henders; Grant W. Montgomery; Dale R. Nyholt; John Whitfield

Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P < 1.09 × 10(-9)) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N = 1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.


Diabetes Care | 2014

Roux-en-Y Gastric Bypass Surgery, but Not Calorie Restriction, Reduces Plasma Branched-Chain Amino Acids in Obese Women Independent of Weight Loss or the Presence of Type 2 Diabetes

Lips; J.B. van Klinken; Vanessa van Harmelen; Harish Dharuri; Peter A. C. 't Hoen; Jeroen F. J. Laros; G.J.B. van Ommen; Ignace M C Janssen; B. van Ramshorst; B. A. van Wagensveld; Dingeman J. Swank; F. M. H. van Dielen; Adrie Dane; Amy C. Harms; R. Vreeken; Thomas Hankemeier; Johannes W. A. Smit; Hanno Pijl; K.W. van Dijk

OBJECTIVE Obesity and type 2 diabetes mellitus (T2DM) have been associated with increased levels of circulating branched-chain amino acids (BCAAs) that may be involved in the pathogenesis of insulin resistance. However, weight loss has not been consistently associated with the reduction of BCAA levels. RESEARCH DESIGN AND METHODS We included 30 obese normal glucose-tolerant (NGT) subjects, 32 obese subjects with T2DM, and 12 lean female subjects. Obese subjects underwent either a restrictive procedure (gastric banding [GB], a very low-calorie diet [VLCD]), or a restrictive/bypass procedure (Roux-en-Y gastric bypass [RYGB] surgery). Fasting blood samples were taken for the determination of amine group containing metabolites 4 weeks before, as well as 3 weeks and 3 months after the intervention. RESULTS BCAA levels were higher in T2DM subjects, but not in NGT subjects, compared with lean subjects. Principal component (PC) analysis revealed a concise PC consisting of all BCAAs, which showed a correlation with measures of insulin sensitivity and glucose tolerance. Only after the RYGB procedure, and at both 3 weeks and 3 months, were circulating BCAA levels reduced. CONCLUSIONS Our data confirm an association between deregulation of BCAA metabolism in plasma and insulin resistance and glucose intolerance. Three weeks after undergoing RYGB surgery, a significant decrease in BCAAs in both NGT as well as T2DM subjects was observed. After 3 months, despite inducing significant weight loss, neither GB nor VLCD induced a reduction in BCAA levels. Our results indicate that the bypass procedure of RYGB surgery, independent of weight loss or the presence of T2DM, reduces BCAA levels in obese subjects.


PLOS Genetics | 2015

Insight in Genome-Wide Association of Metabolite Quantitative Traits by Exome Sequence Analyses

Ayse Demirkan; Peter Henneman; Aswin Verhoeven; Harish Dharuri; Najaf Amin; Jan B. van Klinken; Lennart C. Karssen; Boukje de Vries; Axel Meissner; Sibel Göraler; Arn M. J. M. van den Maagdenberg; André M. Deelder; Peter A. C. 't Hoen; Cornelia M. van Duijn; Ko Willems van Dijk

Metabolite quantitative traits carry great promise for epidemiological studies, and their genetic background has been addressed using Genome-Wide Association Studies (GWAS). Thus far, the role of less common variants has not been exhaustively studied. Here, we set out a GWAS for metabolite quantitative traits in serum, followed by exome sequence analysis to zoom in on putative causal variants in the associated genes. 1H Nuclear Magnetic Resonance (1H-NMR) spectroscopy experiments yielded successful quantification of 42 unique metabolites in 2,482 individuals from The Erasmus Rucphen Family (ERF) study. Heritability of metabolites were estimated by SOLAR. GWAS was performed by linear mixed models, using HapMap imputations. Based on physical vicinity and pathway analyses, candidate genes were screened for coding region variation using exome sequence data. Heritability estimates for metabolites ranged between 10% and 52%. GWAS replicated three known loci in the metabolome wide significance: CPS1 with glycine (P-value  = 1.27×10−32), PRODH with proline (P-value  = 1.11×10−19), SLC16A9 with carnitine level (P-value  = 4.81×10−14) and uncovered a novel association between DMGDH and dimethyl-glycine (P-value  = 1.65×10−19) level. In addition, we found three novel, suggestively significant loci: TNP1 with pyruvate (P-value  = 1.26×10−8), KCNJ16 with 3-hydroxybutyrate (P-value  = 1.65×10−8) and 2p12 locus with valine (P-value  = 3.49×10−8). Exome sequence analysis identified potentially causal coding and regulatory variants located in the genes CPS1, KCNJ2 and PRODH, and revealed allelic heterogeneity for CPS1 and PRODH. Combined GWAS and exome analyses of metabolites detected by high-resolution 1H-NMR is a robust approach to uncover metabolite quantitative trait loci (mQTL), and the likely causative variants in these loci. It is anticipated that insight in the genetics of intermediate phenotypes will provide additional insight into the genetics of complex traits.


Journal of Lipid Research | 2014

Prolonged niacin treatment leads to increased adipose tissue PUFA synthesis and anti-inflammatory lipid and oxylipin plasma profile

Mattijs M. Heemskerk; Harish Dharuri; Sjoerd A. A. van den Berg; Hulda S. Jónasdóttir; Dick-Paul Kloos; Martin Giera; Ko Willems van Dijk; Vanessa van Harmelen

Prolonged niacin treatment elicits beneficial effects on the plasma lipid and lipoprotein profile that is associated with a protective CVD risk profile. Acute niacin treatment inhibits nonesterified fatty acid release from adipocytes and stimulates prostaglandin release from skin Langerhans cells, but the acute effects diminish upon prolonged treatment, while the beneficial effects remain. To gain insight in the prolonged effects of niacin on lipid metabolism in adipocytes, we used a mouse model with a human-like lipoprotein metabolism and drug response [female APOE*3-Leiden.CETP (apoE3 Leiden cholesteryl ester transfer protein) mice] treated with and without niacin for 15 weeks. The gene expression profile of gonadal white adipose tissue (gWAT) from niacin-treated mice showed an upregulation of the “biosynthesis of unsaturated fatty acids” pathway, which was corroborated by quantitative PCR and analysis of the FA ratios in gWAT. Also, adipocytes from niacin-treated mice secreted more of the PUFA DHA ex vivo. This resulted in an increased DHA/arachidonic acid (AA) ratio in the adipocyte FA secretion profile and in plasma of niacin-treated mice. Interestingly, the DHA metabolite 19,20-dihydroxy docosapentaenoic acid (19,20-diHDPA) was increased in plasma of niacin-treated mice. Both an increased DHA/AA ratio and increased 19,20-diHDPA are indicative for an anti-inflammatory profile and may indirectly contribute to the atheroprotective lipid and lipoprotein profile associated with prolonged niacin treatment.


Biochimica et Biophysica Acta | 2014

Genetics of the human metabolome, what is next?

Harish Dharuri; Ayse Demirkan; Jan B. van Klinken; Dennis O. Mook-Kanamori; Cornelia van Duijn; Peter A. C. 't Hoen; Ko Willems van Dijk

Increases in throughput and decreases in costs have facilitated large scale metabolomics studies, the simultaneous measurement of large numbers of biochemical components in biological samples. Initial large scale studies focused on biomarker discovery for disease or disease progression and helped to understand biochemical pathways underlying disease. The first population-based studies that combined metabolomics and genome wide association studies (mGWAS) have increased our understanding of the (genetic) regulation of biochemical conversions. Measurements of metabolites as intermediate phenotypes are a potentially very powerful approach to uncover how genetic variation affects disease susceptibility and progression. However, we still face many hurdles in the interpretation of mGWAS data. Due to the composite nature of many metabolites, single enzymes may affect the levels of multiple metabolites and, conversely, levels of single metabolites may be affected by multiple enzymes. Here, we will provide a global review of the current status of mGWAS. We will specifically discuss the application of prior biological knowledge present in databases to the interpretation of mGWAS results and discuss the potential of mathematical models. As the technology continuously improves to detect metabolites and to measure genetic variation, it is clear that comprehensive systems biology based approaches are required to further our insight in the association between genes, metabolites and disease. This article is part of a Special Issue entitled: From Genome to Function.


Journal of Biomedical Semantics | 2014

Structuring research methods and data with the research object model: genomics workflows as a case study.

Kristina M. Hettne; Harish Dharuri; Jun Zhao; Katherine Wolstencroft; Khalid Belhajjame; Stian Soiland-Reyes; Eleni Mina; Mark Thompson; Don C. Cruickshank; L. Verdes-Montenegro; Julián Garrido; David De Roure; Oscar Corcho; Graham Klyne; Reinout van Schouwen; Peter A. C. 't Hoen; Sean Bechhofer; Carole A. Goble; Marco Roos

BackgroundOne of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows.ResultsWe present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as “which particular data was input to a particular workflow to test a particular hypothesis?”, and “which particular conclusions were drawn from a particular workflow?”.ConclusionsApplying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well.AvailabilityThe Research Object is available at http://www.myexperiment.org/packs/428The Wf4Ever Research Object Model is available at http://wf4ever.github.io/ro


Diabetologia | 2014

Downregulation of the acetyl-CoA metabolic network in adipose tissue of obese diabetic individuals and recovery after weight loss

Harish Dharuri; Peter A. C. 't Hoen; Jan B. van Klinken; Peter Henneman; Jeroen F. J. Laros; Mirjam A. Lips; Fatiha el Bouazzaoui; Gert-Jan B. van Ommen; Ignace M C Janssen; Bert Van Ramshorst; Bert A. van Wagensveld; Hanno Pijl; Ko Willems van Dijk; Vanessa van Harmelen

Aims/hypothesisNot all obese individuals develop type 2 diabetes. Why some obese individuals retain normal glucose tolerance (NGT) is not well understood. We hypothesise that the biochemical mechanisms that underlie the function of adipose tissue can help explain the difference between obese individuals with NGT and those with type 2 diabetes.MethodsRNA sequencing was used to analyse the transcriptome of samples extracted from visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) of obese women with NGT or type 2 diabetes who were undergoing bariatric surgery. The gene expression data was analysed by bioinformatic visualisation and statistical analyses techniques.ResultsA network-based approach to distinguish obese individuals with NGT from obese individuals with type 2 diabetes identified acetyl-CoA metabolic network downregulation as an important feature in the pathophysiology of type 2 diabetes in obese individuals. In general, genes within two reaction steps of acetyl-CoA were found to be downregulated in the VAT and SAT of individuals with type 2 diabetes. Upon weight loss and amelioration of metabolic abnormalities three months following bariatric surgery, the expression level of these genes recovered to levels seen in individuals with NGT. We report four novel genes associated with type 2 diabetes and recovery upon weight loss: ACAT1 (encoding acetyl-CoA acetyltransferase 1), ACACA (encoding acetyl-CoA carboxylase α), ALDH6A1 (encoding aldehyde dehydrogenase 6 family, member A1) and MTHFD1 (encoding methylenetetrahydrofolate dehydrogenase).Conclusions/interpretationDownregulation of the acetyl-CoA network in VAT and SAT is an important feature in the pathophysiology of type 2 diabetes in obese individuals. ACAT1, ACACA, ALDH6A1 and MTHFD1 represent novel biomarkers in adipose tissue associated with type 2 diabetes in obese individuals.


BMC Genomics | 2013

Automated workflow-based exploitation of pathway databases provides new insights into genetic associations of metabolite profiles

Harish Dharuri; Peter Henneman; Ayse Demirkan; Jan B. van Klinken; Dennis O. Mook-Kanamori; Rui Wang-Sattler; Christian Gieger; Jerzy Adamski; Kristina M. Hettne; Marco Roos; Karsten Suhre; Cornelia van Duijn; Ko Willems van Dijk; Peter A. C. 't Hoen

BackgroundGenome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) that associate with clinical phenotypes, but these SNPs usually explain just a small part of the heritability and have relatively modest effect sizes. In contrast, SNPs that associate with metabolite levels generally explain a higher percentage of the genetic variation and demonstrate larger effect sizes. Still, the discovery of SNPs associated with metabolite levels is challenging since testing all metabolites measured in typical metabolomics studies with all SNPs comes with a severe multiple testing penalty. We have developed an automated workflow approach that utilizes prior knowledge of biochemical pathways present in databases like KEGG and BioCyc to generate a smaller SNP set relevant to the metabolite. This paper explores the opportunities and challenges in the analysis of GWAS of metabolomic phenotypes and provides novel insights into the genetic basis of metabolic variation through the re-analysis of published GWAS datasets.ResultsRe-analysis of the published GWAS dataset from Illig et al. (Nature Genetics, 2010) using a pathway-based workflow (http://www.myexperiment.org/packs/319.html), confirmed previously identified hits and identified a new locus of human metabolic individuality, associating Aldehyde dehydrogenase family1 L1 (ALDH1L1) with serine/glycine ratios in blood. Replication in an independent GWAS dataset of phospholipids (Demirkan et al., PLoS Genetics, 2012) identified two novel loci supported by additional literature evidence: GPAM (Glycerol-3 phosphate acyltransferase) and CBS (Cystathionine beta-synthase). In addition, the workflow approach provided novel insight into the affected pathways and relevance of some of these gene-metabolite pairs in disease development and progression.ConclusionsWe demonstrate the utility of automated exploitation of background knowledge present in pathway databases for the analysis of GWAS datasets of metabolomic phenotypes. We report novel loci and potential biochemical mechanisms that contribute to our understanding of the genetic basis of metabolic variation and its relationship to disease development and progression.


PLOS ONE | 2014

Proteomic Analysis in Type 2 Diabetes Patients before and after a Very Low Calorie Diet Reveals Potential Disease State and Intervention Specific Biomarkers

Maria A. Sleddering; Albert J. Markvoort; Harish Dharuri; Skhandhan Jeyakar; Marieke Snel; Peter Juhasz; Moira Lynch; Wade M. Hines; Xiaohong Li; Ingrid M. Jazet; Aram Adourian; Peter A. J. Hilbers; Johannes W. A. Smit; Ko Willems van Dijk

Very low calorie diets (VLCD) with and without exercise programs lead to major metabolic improvements in obese type 2 diabetes patients. The mechanisms underlying these improvements have so far not been elucidated fully. To further investigate the mechanisms of a VLCD with or without exercise and to uncover possible biomarkers associated with these interventions, blood samples were collected from 27 obese type 2 diabetes patients before and after a 16-week VLCD (Modifast ∼450 kcal/day). Thirteen of these patients followed an exercise program in addition to the VCLD. Plasma was obtained from 27 lean and 27 obese controls as well. Proteomic analysis was performed using mass spectrometry (MS) and targeted multiple reaction monitoring (MRM) and a large scale isobaric tags for relative and absolute quantitation (iTRAQ) approach. After the 16-week VLCD, there was a significant decrease in body weight and HbA1c in all patients, without differences between the two intervention groups. Targeted MRM analysis revealed differences in several proteins, which could be divided in diabetes-associated (fibrinogen, transthyretin), obesity-associated (complement C3), and diet-associated markers (apolipoproteins, especially apolipoprotein A-IV). To further investigate the effects of exercise, large scale iTRAQ analysis was performed. However, no proteins were found showing an exercise effect. Thus, in this study, specific proteins were found to be differentially expressed in type 2 diabetes patients versus controls and before and after a VLCD. These proteins are potential disease state and intervention specific biomarkers. Trial Registration Controlled-Trials.com ISRCTN76920690


SWAT4LS | 2012

Best Practices for Workflow Design: How to Prevent Workflow Decay

Kristina M. Hettne; Katherine Wolstencroft; Khalid Belhajjame; Carole A. Goble; Eleni Mina; Harish Dharuri; David De Roure; L. Verdes-Montenegro; Julián Garrido; Marco Roos

Collaboration


Dive into the Harish Dharuri's collaboration.

Top Co-Authors

Avatar

Ko Willems van Dijk

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter A. C. 't Hoen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jan B. van Klinken

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ayse Demirkan

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Kristina M. Hettne

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marco Roos

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa van Harmelen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Cornelia van Duijn

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dennis O. Mook-Kanamori

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge