Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harish Doraiswamy is active.

Publication


Featured researches published by Harish Doraiswamy.


Computational Geometry: Theory and Applications | 2009

Efficient algorithms for computing Reeb graphs

Harish Doraiswamy; Vijay Natarajan

The Reeb graph tracks topology changes in level sets of a scalar function and finds applications in scientific visualization and geometric modeling. We describe an algorithm that constructs the Reeb graph of a Morse function defined on a 3-manifold. Our algorithm maintains connected components of the two dimensional levels sets as a dynamic graph and constructs the Reeb graph in O(nlogn+nlogg(loglogg)^3) time, where n is the number of triangles in the tetrahedral mesh representing the 3-manifold and g is the maximum genus over all level sets of the function. We extend this algorithm to construct Reeb graphs of d-manifolds in O(nlogn(loglogn)^3) time, where n is the number of triangles in the simplicial complex that represents the d-manifold. Our result is a significant improvement over the previously known O(n^2) algorithm. Finally, we present experimental results of our implementation and demonstrate that our algorithm for 3-manifolds performs efficiently in practice.


IEEE Transactions on Visualization and Computer Graphics | 2014

Using topological analysis to support event-guided exploration in urban data

Harish Doraiswamy; Nivan Ferreira; Theodoros Damoulas; Juliana Freire; Cláudio T. Silva

The explosion in the volume of data about urban environments has opened up opportunities to inform both policy and administration and thereby help governments improve the lives of their citizens, increase the efficiency of public services, and reduce the environmental harms of development. However, cities are complex systems and exploring the data they generate is challenging. The interaction between the various components in a city creates complex dynamics where interesting facts occur at multiple scales, requiring users to inspect a large number of data slices over time and space. Manual exploration of these slices is ineffective, time consuming, and in many cases impractical. In this paper, we propose a technique that supports event-guided exploration of large, spatio-temporal urban data. We model the data as time-varying scalar functions and use computational topology to automatically identify events in different data slices. To handle a potentially large number of events, we develop an algorithm to group and index them, thus allowing users to interactively explore and query event patterns on the fly. A visual exploration interface helps guide users towards data slices that display interesting events and trends. We demonstrate the effectiveness of our technique on two different data sets from New York City (NYC): data about taxi trips and subway service. We also report on the feedback we received from analysts at different NYC agencies.


IEEE Transactions on Visualization and Computer Graphics | 2013

Computing Reeb Graphs as a Union of Contour Trees

Harish Doraiswamy; Vijay Natarajan

The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.


ieee international conference on high performance computing, data, and analytics | 2012

A hybrid parallel algorithm for computing and tracking level set topology

Senthilnathan Maadasamy; Harish Doraiswamy; Vijay Natarajan

The contour tree is a topological abstraction of a scalar field that captures evolution in level set connectivity. It is an effective representation for visual exploration and analysis of scientific data. We describe a work-efficient, output sensitive, and scalable parallel algorithm for computing the contour tree of a scalar field defined on a domain that is represented using either an unstructured mesh or a structured grid. A hybrid implementation of the algorithm using the GPU and multi-core CPU can compute the contour tree of an input containing 16 million vertices in less than ten seconds with a speedup factor of upto 13. Experiments based on an implementation in a multi-core CPU environment show near-linear speedup for large data sets.


IEEE Transactions on Visualization and Computer Graphics | 2012

Output-Sensitive Construction of Reeb Graphs

Harish Doraiswamy; Vijay Natarajan

The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.


IEEE Transactions on Visualization and Computer Graphics | 2013

An Exploration Framework to Identify and Track Movement of Cloud Systems

Harish Doraiswamy; Vijay Natarajan; Ravi S. Nanjundiah

We describe a framework to explore and visualize the movement of cloud systems. Using techniques from computational topology and computer vision, our framework allows the user to study this movement at various scales in space and time. Such movements could have large temporal and spatial scales such as the Madden Julian Oscillation (MJO), which has a spatial scale ranging from 1000 km to 10000 km and time of oscillation of around 40 days. Embedded within these larger scale oscillations are a hierarchy of cloud clusters which could have smaller spatial and temporal scales such as the Nakazawa cloud clusters. These smaller cloud clusters, while being part of the equatorial MJO, sometimes move at speeds different from the larger scale and in a direction opposite to that of the MJO envelope. Hitherto, one could only speculate about such movements by selectively analysing data and a priori knowledge of such systems. Our framework automatically delineates such cloud clusters and does not depend on the prior experience of the user to define cloud clusters. Analysis using our framework also shows that most tropical systems such as cyclones also contain multi-scale interactions between clouds and cloud systems. We show the effectiveness of our framework to track organized cloud system during one such rainfall event which happened at Mumbai, India in July 2005 and for cyclone Aila which occurred in Bay of Bengal during May 2009.


international conference on management of data | 2016

Data Polygamy: The Many-Many Relationships among Urban Spatio-Temporal Data Sets

Fernando Chirigati; Harish Doraiswamy; Theodoros Damoulas; Juliana Freire

The increasing ability to collect data from urban environments, coupled with a push towards openness by governments, has resulted in the availability of numerous spatio-temporal data sets covering diverse aspects of a city. Discovering relationships between these data sets can produce new insights by enabling domain experts to not only test but also generate hypotheses. However, discovering these relationships is difficult. First, a relationship between two data sets may occur only at certain locations and/or time periods. Second, the sheer number and size of the data sets, coupled with the diverse spatial and temporal scales at which the data is available, presents computational challenges on all fronts, from indexing and querying to analyzing them. Finally, it is non-trivial to differentiate between meaningful and spurious relationships. To address these challenges, we propose Data Polygamy, a scalable topology-based framework that allows users to query for statistically significant relationships between spatio-temporal data sets. We have performed an experimental evaluation using over 300 spatial-temporal urban data sets which shows that our approach is scalable and effective at identifying interesting relationships.


visual analytics science and technology | 2015

Urbane: A 3D framework to support data driven decision making in urban development

Nivan Ferreira; Marcos Lage; Harish Doraiswamy; Huy T. Vo; Luc Wilson; Heidi Werner; Muchan Park; Cláudio T. Silva

Architects working with developers and city planners typically rely on experience, precedent and data analyzed in isolation when making decisions that impact the character of a city. These decisions are critical in enabling vibrant, sustainable environments but must also negotiate a range of complex political and social forces. This requires those shaping the built environment to balance maximizing the value of a new development with its impact on the character of a neighborhood. As a result architects are focused on two issues throughout the decision making process: a) what defines the character of a neighborhood? and b) how will a new development change its neighborhood? In the first, character can be influenced by a variety of factors and understanding the interplay between diverse data sets is crucial; including safety, transportation access, school quality and access to entertainment. In the second, the impact of a new development is measured, for example, by how it impacts the view from the buildings that surround it. In this paper, we work in collaboration with architects to design Urbane, a 3-dimensional multi-resolution framework that enables a data-driven approach for decision making in the design of new urban development. This is accomplished by integrating multiple data layers and impact analysis techniques facilitating architects to explore and assess the effect of these attributes on the character and value of a neighborhood. Several of these data layers, as well as impact analysis, involve working in 3-dimensions and operating in real time. Efficient computation and visualization is accomplished through the use of techniques from computer graphics. We demonstrate the effectiveness of Urbane through a case study of development in Manhattan depicting how a data-driven understanding of the value and impact of speculative buildings can benefit the design-development process between architects, planners and developers.


eurographics | 2015

Exploring traffic dynamics in urban environments using vector-valued functions

Jorge Poco; Harish Doraiswamy; Huy T. Vo; João Luiz Dihl Comba; Juliana Freire; Cláudio T. Silva

The traffic infrastructure greatly impacts the quality of life in urban environments. To optimize this infrastructure, engineers and decision makers need to explore traffic data. In doing so, they face two important challenges: the sparseness of speed sensors that cover only a limited number of road segments, and the complexity of traffic patterns they need to analyze. In this paper we take a first step at addressing these challenges. We use New York City (NYC) taxi trips as sensors to capture traffic information. While taxis provide substantial coverage of the city, the data captured about taxi trips contain neither the location of taxis at frequent intervals nor their routes. We propose an efficient traffic model to derive speed and direction information from these data, and show that it provides reliable estimates. Using these estimates, we define a time‐varying vector‐valued function on a directed graph representing the road network, and adapt techniques used for vector fields to visualize the traffic dynamics. We demonstrate the utility of our technique in several case studies that reveal interesting mobility patterns in NYCs traffic. These patterns were validated by experts from NYCs Department of Transportation and the NYC Taxi & Limousine Commission, who also provided interesting insights into these results.


IEEE Transactions on Visualization and Computer Graphics | 2017

Urban Pulse: Capturing the Rhythm of Cities

Fabio Miranda; Harish Doraiswamy; Marcos Lage; Kai Zhao; Bruno Gonçalves; Luc Wilson; Mondrian Hsieh; Cláudio T. Silva

Cities are inherently dynamic. Interesting patterns of behavior typically manifest at several key areas of a city over multiple temporal resolutions. Studying these patterns can greatly help a variety of experts ranging from city planners and architects to human behavioral experts. Recent technological innovations have enabled the collection of enormous amounts of data that can help in these studies. However, techniques using these data sets typically focus on understanding the data in the context of the city, thus failing to capture the dynamic aspects of the city. The goal of this work is to instead understand the city in the context of multiple urban data sets. To do so, we define the concept of an “urban pulse” which captures the spatio-temporal activity in a city across multiple temporal resolutions. The prominent pulses in a city are obtained using the topology of the data sets, and are characterized as a set of beats. The beats are then used to analyze and compare different pulses. We also design a visual exploration framework that allows users to explore the pulses within and across multiple cities under different conditions. Finally, we present three case studies carried out by experts from two different domains that demonstrate the utility of our framework.

Collaboration


Dive into the Harish Doraiswamy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vijay Natarajan

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcos Lage

Federal Fluminense University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge