Harlan E. Spence
University of New Hampshire
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harlan E. Spence.
Nature | 2013
Richard M. Thorne; W. Li; B. Ni; Q. Ma; J. Bortnik; Lunjin Chen; D. N. Baker; Harlan E. Spence; G. D. Reeves; M. G. Henderson; C. A. Kletzing; W. S. Kurth; G. B. Hospodarsky; J. B. Blake; J. F. Fennell; S. G. Claudepierre; Shrikanth G. Kanekal
Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt, but are inconsistent with acceleration by inward radial diffusive transport. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth’s outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.
Science | 2013
G. D. Reeves; Harlan E. Spence; M. G. Henderson; S. K. Morley; Roland H. Friedel; H. O. Funsten; D. N. Baker; Shrikanth G. Kanekal; J. B. Blake; J. F. Fennell; S. G. Claudepierre; Richard M. Thorne; D. L. Turner; C. A. Kletzing; W. S. Kurth; Brian A. Larsen; J. T. Niehof
Local Acceleration How the electrons trapped in Earth-encircling Van Allen radiation belts get accelerated has been debated since their discovery in 1958. Reeves et al. (p. 991, published online 25 July) used data from the Van Allen Radiation Belt Storm Probes, launched by NASA on 30 August 2012, to discover that radiation belt electrons are accelerated locally by wave-particle interactions, rather than by radial transport from regions of weaker to stronger magnetic fields. Satellite observations provide evidence for local relativistic electron acceleration in Earth’s radiation belts. The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth’s magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA’s Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belts and are inconsistent with a predominantly radial acceleration process.
Geophysical Research Letters | 2014
M. E. Usanova; A. Drozdov; Ksenia Orlova; Ian R. Mann; Y. Y. Shprits; M. T. Robertson; D. L. Turner; David K. Milling; A. Kale; D. N. Baker; S. A. Thaller; G. D. Reeves; Harlan E. Spence; C. A. Kletzing; J. R. Wygant
We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both observational and modeling perspectives, we show evidence of EMIC waves triggering ultrarelativistic (~2–8 MeV) electron loss but which is confined to pitch angles below around 45° and not affecting the core distribution.
Science | 2013
D. N. Baker; Shrikanth G. Kanekal; V. C. Hoxie; M. G. Henderson; X. Li; Harlan E. Spence; Scot Richard Elkington; Roland H. Friedel; J. Goldstein; M. K. Hudson; G. D. Reeves; Richard M. Thorne; C. A. Kletzing; S. G. Claudepierre
Van Allen Variation The two rings of relativistic particles called Van Allen Belts that encircle Earth were discovered during the space age, and are known to pose risks to satellites in geostationary orbit. NASA launched twin spacecraft, the Van Allen Probes, on 30 August 2012 to measure and characterize Earths radiation belt regions. Baker et al. (p. 186, published online 28 February) have shown that a third, unexpected and temporary, radiation belt formed on 2 September 2012 to disappear 4 weeks later in response to changes in the solar wind. NASA’s Van Allen Probes revealed an additional, dynamic belt of relativistic particles surrounding Earth. Since their discovery more than 50 years ago, Earth’s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unchanged in the geocentric radial range of 3.0 to ~3.5 Earth radii for more than 4 weeks before being disrupted (and virtually annihilated) by a powerful interplanetary shock wave passage.
Journal of Geophysical Research | 1998
Jiasheng Chen; Theodore A. Fritz; Robert B. Sheldon; Harlan E. Spence; Walther N. Spjeldvik; J. F. Fennell; S. Livi; C. T. Russell; Jolene S. Pickett; D. A. Gurnett
The Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) on board the Polar spacecraft observed 75 energetic particle events in 1996 while the satellite was at apogee. All of these events were associated with a decrease in the magnitude of the local magnetic field measured by the Magnetic Field Experiment (MFE) on Polar. These new events showed several unusual features: (1) They were detected in the dayside polar cusp near the apogee of Polar with about 79% of the total events in the afternoonside and 21% in the morningside; (2) an individual event could last for hours; (3) the measured helium ion had energies up to and many times in excess of 2.4 MeV; (4) the intensity of 1-200 KeV/e helium was anticorrelated with the magnitude of the local geomagnetic field but correlated with the turbulent magnetic energy density; (5) the events were associated with an enhancement of the low-frequency magnetic noise, the spectrum of which typically extends from a few hertz to a few hundreds of hertz as measured by the Plasma Wave Instrument (PWI) on Polar; and (6) a seasonal variation was found for the occurrence rate of the events with a maximum in September. These characterized a new phenomenon which we are calling cusp energetic particle (CEP) events. The observed high charge state of helium and oxygen ions in the CEP events indicates a solar source for these particles. Furthermore, the measured 0.52-1.15 MeV helium flux was proportional to the difference between the maximum and the minimum magnetic field in the event. A possible explanation is that the energetic helium ions are energized from lower energy helium by a local acceleration mechanism associated with the high-altitude dayside cusp. These observations represent a potential discovery of a major acceleration region of the magnetosphere.
Journal of Geophysical Research | 1997
D. N. Baker; X. Li; N. E. Turner; Joe H. Allen; L F Bargatze; J. B. Blake; Robert B. Sheldon; Harlan E. Spence; R. D. Belian; G. D. Reeves; S. G. Kanekal; B. Klecker; R. P. Lepping; K. W. Ogilvie; R. A. Mewaldt; T. G. Onsager; H. J. Singer; Gordon Rostoker
New, coordinated measurements from the International Solar-Terrestrial Physics (ISTP) constellation of spacecraft are presented to show the causes and effects of recurrent geomagnetic activity during recent solar minimum conditions. It is found using WIND and POLAR data that even for modest geomagnetic storms, relativistic electron fluxes are strongly and rapidly enhanced within the outer radiation zone of the Earths magnetosphere. Solar wind data are utilized to identify the drivers of magnetospheric acceleration processes. Yohkoh solar soft X-ray data are also used to identify the solar coronal holes that produce the high-speed solar wind streams which, in turn, cause the recurrent geomagnetic activity. It is concluded that even during extremely quiet solar conditions (sunspot minimum) there are discernible coronal holes and resultant solar wind streams which can produce intense magnetospheric particle acceleration. As a practical consequence of this Sun-Earth connection, it is noted that a long-lasting E>1MeV electron event in late March 1996 appears to have contributed significantly to a major spacecraft (Anik E1) operational failure.
Journal of Geophysical Research | 1993
Harlan E. Spence; M. G. Kivelson
Convection of plasma within the terrestrial nightside plasma sheet contributes to the structure and, possibly, the dynamical evolution of the magnetotail. In order to characterize the steady state convection process, we have extended the finite tail width model of magnetotail plasma sheet convection. The model assumes uniform plasma sources and accounts for both the duskward gradient/curvature drift and the earthward E × B drift of ions in a two-dimensional magnetic geometry. During periods of slow convection (i.e., when the cross-tail electric potential energy is small relative to the source plasmas thermal energy), there is a significant net duskward displacement of the pressure-bearing ions. The electrons are assumed to be cold, and we argue that this assumption is appropriate for plasma sheet parameters. We generalize solutions previously obtained along the midnight meridian to describe the variation of the plasma pressure and number density across the width of the tail. For a uniform deep-tail source of particles, the plasma pressure and number density are unrealistically low along the near-tail dawn flank. We therefore add a secondary source of plasma originating from the dawnside low-latitude boundary layer (LLBL). The dual plasma sources contribute to the plasma pressure and number density throughout the magnetic equatorial plane. Model results indicate that the LLBL may be a significant source of near-tail central plasma sheet plasma during periods of weak convection. The model predicts a cross-tail pressure gradient from dawn to dusk in the near magnetotail. We suggest that the plasma pressure gradient is balanced in part by an oppositely directed magnetic pressure gradient for which there is observational evidence. Finally, the pressure to number density ratio is used to define the plasma “temperature.” We stress that such quantities as temperature and polytropic index must be interpreted with care as they lose their nominal physical significance in regions where the two-source plasmas intermix appreciably and the distributions become non-Maxwellian.
Journal of Geophysical Research | 2014
W. Li; Richard M. Thorne; Q. Ma; B. Ni; J. Bortnik; D. N. Baker; Harlan E. Spence; G. D. Reeves; S. G. Kanekal; J. C. Green; C. A. Kletzing; W. S. Kurth; G. B. Hospodarsky; J. B. Blake; J. F. Fennell; S. G. Claudepierre
Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement in magnitude, timing, energy dependence, and pitch angle distribution with the observed electron PSD near its peak location. However, radial diffusion and other loss processes may be required to explain the differences between the observation and simulation at other locations away from the PSD peak. Our simulation results, together with previous studies, suggest that local acceleration by chorus waves is a robust and ubiquitous process and plays a critical role in accelerating injected seed electrons with convective energies (~100 keV) to highly relativistic energies (several MeV).
Journal of Geophysical Research | 2015
A. A. Saikin; J.-C. Zhang; R. C. Allen; Charles W. Smith; L. M. Kistler; Harlan E. Spence; R. B. Torbert; C. A. Kletzing; V. K. Jordanova
We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 RE). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 to 30 June 2014). EMIC waves are examined in H+, He+, and O+ bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H+-band events, 438 He+-band events, and 68 O+-band events). EMIC wave events are observed between L = 2–8, with over 140 EMIC wave events observed below L = 4. Results show that H+-band EMIC waves have two peak magnetic local time (MLT) occurrence regions: prenoon (09:00 0.1 nT2/Hz), especially in the afternoon sector. Ellipticity observations reveal that linearly polarized EMIC waves dominate in lower L shells.
Geophysical Research Letters | 1998
G. D. Reeves; D. N. Baker; R. D. Belian; J. B. Blake; Thomas E. Cayton; J. F. Fennell; R. H. W. Friedel; M. M. Meier; R. S. Selesnick; Harlan E. Spence
In January 1997 a large fleet of NASA and US military satellites provided the most complete observations to date of the changes in >2 MeV electrons during a geomagnetic storm. Observations at geosynchronous orbit revealed a somewhat unusual two-peaked enhancement in relativistic electron fluxes [ Reeves et al., 1998]. In the heart of the radiation belts at L ≈ 4, however, there was a single enhancement followed by a gradual decay. Radial profiles from the POLAR and GPS satellites revealed three distinct phases. (1) In the acceleration phase electron fluxes increased simultaneously at L ≈ 4–6. (2) During the passage of the cloud the radiation belts were shifted radially outward and then relaxed earthward. (3) For several days after the passage of the cloud the radial gradient of the fluxes flattened, increasing the fluxes at higher L-shells. These observations provide evidence that the acceleration of relativistic electrons takes place within the radiation belts and is rapid. Both magnetospheric compression and radial diffusion can cause a redistribution of electron fluxes within the magnetosphere that make the event profiles appear quite different when viewed at different L-shells.