Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pieter K. Wierenga is active.

Publication


Featured researches published by Pieter K. Wierenga.


PLOS ONE | 2008

Rescue of Salivary Gland Function after Stem Cell Transplantation in Irradiated Glands

Isabelle M.A. Lombaert; Jeanette F. Brunsting; Pieter K. Wierenga; Hette Faber; Monique Stokman; Tineke Kok; Willy H. Visser; Harm H. Kampinga; Gerald de Haan; Robert P. Coppes

Head and neck cancer is the fifth most common malignancy and accounts for 3% of all new cancer cases each year. Despite relatively high survival rates, the quality of life of these patients is severely compromised because of radiation-induced impairment of salivary gland function and consequential xerostomia (dry mouth syndrome). In this study, a clinically applicable method for the restoration of radiation-impaired salivary gland function using salivary gland stem cell transplantation was developed. Salivary gland cells were isolated from murine submandibular glands and cultured in vitro as salispheres, which contained cells expressing the stem cell markers Sca-1, c-Kit and Musashi-1. In vitro, the cells differentiated into salivary gland duct cells and mucin and amylase producing acinar cells. Stem cell enrichment was performed by flow cytrometric selection using c-Kit as a marker. In vitro, the cells differentiated into amylase producing acinar cells. In vivo, intra-glandular transplantation of a small number of c-Kit+ cells resulted in long-term restoration of salivary gland morphology and function. Moreover, donor-derived stem cells could be isolated from primary recipients, cultured as secondary spheres and after re-transplantation ameliorate radiation damage. Our approach is the first proof for the potential use of stem cell transplantation to functionally rescue salivary gland deficiency.


Clinical Cancer Research | 2006

Mobilization of bone marrow stem cells by granulocyte colony-stimulating factor ameliorates radiation-induced damage to salivary glands

Isabelle M.A. Lombaert; Pieter K. Wierenga; Tineke Kok; Harm H. Kampinga; Gerald deHaan; Robert P. Coppes

Purpose: One of the major reasons for failure of radiotherapeutic cancer treatment is the limitation in dose that can be applied to the tumor because of coirradiation of the normal healthy tissue. Late radiation-induced damage reduces the quality of life of the patient and may even be life threatening. Replacement of the radiation-sterilized stem cells with unirradiated autologous stem cells may restore the tissue function. Here, we assessed the potential of granulocyte colony-stimulating factor (G-CSF)–mobilized bone marrow–derived cells (BMC) to regenerate and functionally restore irradiated salivary glands used as a model for normal tissue damage. Experimental Design: Male-eGFP+ bone marrow chimeric female C57BL/6 mice were treated with G-CSF, 10 to 60 days after local salivary gland irradiation. Four months after irradiation, salivary gland morphology and flow rate were assessed. Results: G-CSF treatment induced homing of large number of labeled BMCs to the submandibular glands after irradiation. These animals showed significant increased gland weight, number of acinar cells, and salivary flow rates. Donor cells expressed surface markers specific for hematopoietic or endothelial/mesenchymal cells. However, salivary gland acinar cells neither express the G-CSF receptor nor contained the GFP/Y chromosome donor cell label. Conclusions: The results show that BMCs home to damaged salivary glands after mobilization and induce repair processes, which improve function and morphology. This process does not involve transdifferentiation of BMCs to salivary gland cells. Mobilization of BMCs could become a promising modality to ameliorate radiation-induced complications after radiotherapy.


Stem Cells | 2008

Keratinocyte Growth Factor Prevents Radiation Damage to Salivary Glands by Expansion of the Stem/Progenitor Pool

Isabelle M.A. Lombaert; Jeanette F. Brunsting; Pieter K. Wierenga; Harm H. Kampinga; Gerald de Haan; Robert P. Coppes

Irradiation of salivary glands during radiotherapy treatment of patients with head and neck cancer evokes persistent hyposalivation. This results from depletion of stem cells, which renders the gland incapable of replenishing saliva to produce acinar cells. The aim of this study was to investigate whether it is possible to expand the salivary gland stem/progenitor cell population, thereby preventing acinar cell depletion and subsequent gland dysfunction after irradiation. To induce cell proliferation, keratinocyte growth factor (ΔN23‐KGF, palifermin) was administered to C57BL/6 mice for 4 days before and/or after local irradiation of salivary glands. Salivary gland vitality was quantified by in vivo saliva flow rates, morphological measurements, and a newly developed in vitro salisphere progenitor/stem cell assay. Irradiation of salivary glands led to a pronounced reduction in the stem cells of the tissues, resulting in severe hyposalivation and a reduced number of acinar cells. ΔN23‐KGF treatment for 4 days before irradiation indeed induced salivary gland stem/progenitor cell proliferation, increasing the stem and progenitor cell pool. This did not change the relative radiation sensitivity of the stem/progenitor cells, but, as a consequence, an absolute higher number of stem/progenitor cells and acinar cells survived after radiation. Postirradiation treatment with ΔN23‐KGF also improved gland function, and this effect was much more pronounced in ΔN23‐KGF pretreated animals. Post‐treatment with ΔN23‐KGF seemed to act through accelerated expansion of the pool of progenitor/stem cells that survived the irradiation treatment. Overall, our data indicate that ΔN23‐KGF is a promising drug to enhance the number of salivary gland progenitor/stem cells and consequently prevent radiation‐induced hyposalivation.


Clinical Cancer Research | 2008

Cytokine Treatment Improves Parenchymal and Vascular Damage of Salivary Glands after Irradiation

Isabelle M.A. Lombaert; Jeanette F. Brunsting; Pieter K. Wierenga; Harm H. Kampinga; Gerald de Haan; Robert P. Coppes

Purpose: During radiotherapy for head and neck cancer, co-irradiation (IR) of salivary glands results in acute and often lifelong hyposalivation. Recently, we showed that bone marrow-derived cells (BMC) can partially facilitate postradiation regeneration of the mouse submandibular gland. In this study, we investigate whether optimized mobilization of BMCs can further facilitate regeneration of radiation-damaged salivary glands. Experimental Design: Salivary glands of mice reconstituted with eGFP+ bone marrow cells were irradiated with a single dose of 15 Gy. One month later, BMCs were mobilized using granulocyte colony-stimulating factor (G-CSF) or the combination of FMS-like tyrosine kinase-3 ligand, stem cell factor, and G-CSF (termed F/S/G) as mobilizing agents. Salivary gland function and morphology were evaluated at 90 days post-IR by measuring the saliva flow rate, the number of acinar cells, and the functionality of the vasculature. Results: Compared with G-CSF alone, the combined F/S/G treatment mobilized a 10-fold higher number and different types of BMCs to the bloodstream and increased the number of eGFP+ cells in the irradiated submandibular gland from 49% to 65%. Both treatments reduced radiation-induced hyposalivation from almost nothing in the untreated group to ∼20% of normal amount. Surprisingly, however, F/S/G treatment resulted in significant less damage to submandibular blood vessels and induced BMC-derived neovascularization. Conclusions: Post-IR F/S/G treatment facilitates regeneration of the submandibular gland and ameliorates vascular damage. The latter is partly due to BMCs differentiating in vascular cells but is likely to also result from direct stimulation of existing blood vessel cells.


Cell Stress & Chaperones | 2007

Heat shock proteins and Bcl-2 expression and function in relation to the differential hyperthermic sensitivity between leukemic and normal hematopoietic cells

R. Setroikromo; Pieter K. Wierenga; M. A. W. H. van Waarde; Jeanette F. Brunsting; E. Vellenga; Harm H. Kampinga

Abstract A major problem in autologous stem cell transplantation is the occurrence of relapse by residual neoplastic cells from the graft. The selective toxicity of hyperthermia toward malignant hematopoietic progenitors compared with normal bone marrow cells has been utilized in purging protocols. The underlying mechanism for this selective toxicity has remained unclear. By using normal and leukemic cell line models, we searched for molecular mechanisms underlying this selective toxicity. We found that the differential heat sensitivity could not be explained by differences in the expression or inducibility of Hsp and also not by the overall chaperone capacity of the cells. Despite an apparent similarity in initial heat-induced damage, the leukemic cells underwent heat-induced apoptosis more readily than normal hematopoietic cells. The differences in apoptosis initiation were found at or upstream of cytochrome c release from the mitochondria. Sensitivity to staurosporine-induced apoptosis was similar in all cell lines tested, indicating that the apoptotic pathways were equally functional. The higher sensitivity to heat-induced apoptosis correlated with the level of Bcl-2 protein expression. Moreover, stable overexpression of Bcl-2 protected the most heat sensitive leukemic cells against heat-induced apoptosis. Our data indicate that leukemic cells have a specifically lower threshold for heat damage to initiate and execute apoptosis, which is due to an imbalance in the expression of the Bcl-2 family proteins in favor of the proapoptotic family members.


Stem Cells | 1999

In vitro effect of acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) analogs resistant to angiotensin I-converting enzyme on hematopoietic stem cell and progenitor cell proliferation.

Sandrine Gaudron; Catherine Grillon; Josiane Thierry; Andrew Riches; Pieter K. Wierenga; Joanna Wdzieczak-Bakala

The tetrapeptide Acetyl‐N‐Ser‐Asp‐Lys‐Pro (AcSDKP), an inhibitor of hematopoietic stem cell proliferation, is known to reduce in vivo the damage resulting from treatment with chemotherapeutic agents or ionizing radiation on the stem cell compartment. Recently, AcSDKP has been shown to be a physiological substrate of the N‐active site of angiotensin I‐converting enzyme (ACE). Four analogs of the tetrapeptide expressing a high stability towards ACE degradation in vitro have been synthesized in order to provide new molecules likely to improve the myeloprotection displayed by AcSDKP. These analogs are three pseudopeptides with a modified peptidic bond, Ac‐SerΨ(CH2‐NH)Asp‐Lys‐Pro, Ac‐Ser‐AspΨ(CH2‐NH)Lys‐Pro, Ac‐Ser‐Asp‐LysΨ(CH2‐N)Pro, and one C‐terminus modified peptide (AcSDKP‐NH2). We report here that these analogs reduce in vitro the proportion of murine colony‐forming units‐granulocyte/macrophage in S‐phase and inhibit the entry into cycle of high proliferative potential colony‐forming cells. The efficacy of AcSDKP analogs in preventing in vitro primitive hematopoietic stem cells from entering into cycle suggests that these molecules could be new candidates for the powerful inhibition of hematopoietic stem and progenitor cell proliferation in vivo.


Experimental Hematology | 2003

Differences in heat sensitivity between normal and acute myeloid leukemic stem cells: Feasibility of hyperthermic purging of leukemic cells from autologous stem cell grafts

Pieter K. Wierenga; Rita Setroikromo; Gera Kamps; Harm H. Kampinga; Edo Vellenga

OBJECTIVES In autologous stem cell transplantation contamination of the graft with malignant cells is frequently noticed and necessitates the use of in vivo or in vitro purging modalities. The hematopoietic recovery after transplantation depends on the number of stem and progenitor cells in the transplant. Therefore, in the present study the effects of hyperthermic treatment on the human normal and acute myeloid leukemic (AML) stem cell compartment were investigated. METHODS Normal bone marrow and AML blasts were heat treated up to 120 minutes at 43 degrees C. The surviving fractions of the different stem cell subsets were determined using in vitro methylcellulose and cobblestone area-forming cell (CAFC) clonogenic assays, as well as the in vivo NOD/SCID repopulating assay. The leukemic nature of the colonies from AML cells was confirmed by RT-PCR analysis. In order to increase the therapeutic index of the hyperthermic purging modality, the heat treatment was preceded by a 3-hour incubation at 37 degrees C with the ether lipid ET-18-OCH(3) (25 microg/mL). RESULTS It could be demonstrated that normal progenitor cells are far more resistant to hyperthermia than leukemic progenitor cells (56%+/-7% vs 9.9%+/-2.6% survival after 60 minutes at 43 degrees C, respectively). Furthermore, normal hematopoietic stem cells appear to be extremely resistant to the heat treatment (94%+/-9% survival after 60 minutes at 43 degrees C). In contrast, in the leukemic stem cell compartment no significant differences in heat sensitivity between the stem cells and progenitor subsets could be observed (12.3%+/-2.9% vs 9.9%+/-2.6% survival after 60 minutes at 43 degrees C, respectively). The combined treatment resulted in a survival for normal progenitor and stem cells of 32%+/-6% and 85%+/-15% after 60 minutes at 43 degrees C, respectively. Under these conditions the number of leukemic stem cells was reduced to 1%+/-0.3%. After 120 minutes at 43 degrees C, no AML-colonies could be detected anymore. CONCLUSIONS Our data demonstrate that leukemic stem cells have an increased hyperthermic sensitivity compared to their normal counterparts and that this difference can be further increased in combination with ET-18-OCH(3). These striking differences in heat sensitivity warrant the use of hyperthermia as a clinically applicable purging modality in autologous stem cell transplantation.


Journal of Hematotherapy & Stem Cell Research | 2002

Peripheral blood stem cells differ from bone marrow stem cells in cell cycle status, repopulating potential, and sensitivity toward hyperthermic purging in mice mobilized with cyclophosphamide and granulocyte colony-stimulating factor

Pieter K. Wierenga; Rita Setroikromo; Gera Kamps; Harm H. Kampinga; Edo Vellenga

Peripheral blood stem cells (PBSCs) are increasingly used in autologous stem cell transplantations. We investigated the mobilizing effect of a combined cyclophosphamide (CTX) and granulocyte colony-stimulating factor (G-CSF) treatment on progenitor cells (STRA) and primitive stem cells (LTRA) in normal and splenectomized CBA/H mice. This combined treatment not only resulted in mobilization but also in expansion of hematopoietic stem cell subsets. The latter phenomenon was somewhat suppressed in splenectomized animals, but in these mice an enhanced mobilization of STRA and LTRA cells into the peripheral blood was observed. Furthermore, we studied the engraftment potential of mobilized PBSCs. Mice transplanted with PBSCs engrafted significantly better compared to mice transplanted with bone marrow stem cells from control and mobilized mice. The repopulation curve was characterized by a less-deep nadir indicating that the differences occur during the initial phase after transplantation. Contamination of autologous PBSC transplants with malignant cells is noticed frequently and is the basis for urging the use of purging modalities. Here we used hyperthermia and found that the mobilized progenitor cells in peripheral blood are more resistant to hyperthermia than those in the bone marrow (i.e., a survival of 11 +/- 5% after 90 min at 43 degrees C for peripheral blood progenitors, compared to 0.5 +/- 0.4% in bone marrow of mobilized animals and 1.6 +/- 0.5% in normal animals, respectively). Hyperthermic purging does not eliminate the superior repopulating features of a PBSC graft, as is demonstrated by an increased median survival time of lethally irradiated mice transplanted with purged PBSCs. In conclusion, our data demonstrate that CTX + G-CSF-mobilized PBSCs have an enhanced engraftment potential concomitantly with a decreased cycling activity and hence a decreased hyperthermic sensitivity. These findings support the use of these mobilized PBSCs for autologous stem cell transplantation and strengthen the basis for using hyperthermia as a purging modality.


British Journal of Haematology | 2000

Purging of acute myeloid leukaemia cells from stem cell grafts by hyperthermia : enhancement of the therapeutic index by the tetrapeptide AcSDKP and the alkyl-lysophospholipid ET-18-OCH3

Pieter K. Wierenga; Rita Setroikromo; Edo Vellenga; Harm H. Kampinga

Hyperthermia has been shown to be a potential purging modality in autologous stem cell transplantation settings owing to its selective toxicity towards leukaemic cells. We describe two approaches to further increase the therapeutic index of the hyperthermic purging modality by using normal murine bone marrow cells and a murine model for acute myeloid leukaemia. First, the tetrapeptide AcSDKP was used to protect the normal haematopoietic progenitor cells against hyperthermic damage. Pretreatment for 8 h at 37°C with 1 × 10−9 mol/l AcSDKP resulted in a decrease in hyperthermic sensitivity of only normal haematopoietic progenitor cells. This combined treatment protocol revealed a therapeutic index (ratio of surviving fractions of normal vs. leukaemic cells) of > 500, which was considered to be sufficient for purging. This was confirmed in vivo by the survival of lethally irradiated recipients transplanted with purged simulated remission bone marrow (1 × 106 normal bone marrow cells and 5 × 104 leukaemic cells). A further increase of the therapeutic index cells was achieved by the alkyl‐lysophospholipid ET‐18‐OCH3. An incubation for 4 h at 37°C with 25 μg/ml in the presence of 5% fetal calf serum preferentially enhanced the cytotoxic effect towards the leukaemic stem cell. The combination of AcSDKP and ET‐18‐OCH3 with hyperthermia resulted in a therapeutic index of > 5000. This enabled a reduction of the hyperthermic treatment and will further minimize the toxicity to normal haematopoietic stem cell subsets, while a therapeutic index far above the required value is achieved. This tripartite purging treatment therefore offers a safe and fast purging protocol for the elimination of residual leukaemic cells in autografts.


Bone Marrow Transplantation | 2006

Differential role for very late antigen-5 in mobilization and homing of hematopoietic stem cells

Pieter K. Wierenga; B Dontje; de Gerald Haan; van Ronald Os

The role of very late antigen-5 (VLA-5) in homing and mobilization of hematopoietic stem cells from normal bone marrow (NBM) and bone marrow (MBM) and peripheral blood (MPB) from mobilized mice was investigated. We found a decreased number of VLA-5-expressing cells in the lineage-negative fraction of MPB. However, virtually all stem/progenitor cells were present in the VLA-5+ fraction and hence mobilization of hematopoietic stem cell subsets does not coincide with a downregulation of VLA-5. Stem/progenitor cells from MPB and MBM demonstrated enhanced stromal-derived factor-alpha-induced migration. This enhanced migration correlates with an improved hematopoietic reconstitution potential, with the migrated MPB cells showing the fastest reconstitution. Interestingly, homing of MPB, MBM and NBM stem/progenitor cells in bone marrow and spleen did not differ and is therefore not responsible for the differences in hematopoietic reconstitution. The observed increase in VLA-5+ cells in the recipients after transplantation can most probably be attributed to selective homing of VLA-5+ cells instead of an upregulation of VLA-5. Treatment with an antibody to VLA-5 partially inhibited bone marrow homing of progenitor cells, whereas homing in the spleen was hardly affected. These data indicate a differential role for VLA-5 in the movement of stem cells from and toward bone marrow.

Collaboration


Dive into the Pieter K. Wierenga's collaboration.

Top Co-Authors

Avatar

Harm H. Kampinga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Edo Vellenga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Robert P. Coppes

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald de Haan

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B Dontje

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Gera Kamps

University of Groningen

View shared research outputs
Researchain Logo
Decentralizing Knowledge