Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haro Fritsche is active.

Publication


Featured researches published by Haro Fritsche.


Laser Physics Letters | 2013

Dual-wavelength Q-switched Er:YAG laser around 1.6 μm for methane differential absorption lidar

Xin Wang; Haro Fritsche; Oliver Lux; H. J. Eichler; Z Zhao; Casey Schuett; Bastian Kruschke

A pulsed Er:YAG laser with resonant in-band diode pumping was demonstrated. Laser pulses with 6.6 mJ energy and 50 ns pulse duration were generated. With an intra-cavity etalon a broad wavelength tuning range from 1643.47 to 1646.78 nm was obtained. A stable dual-wavelength operation was observed by fine tuning of the etalons. The separation of the two wavelengths was 0.78 nm. One of them was located within a methane absorption line and the other was off the line. The frequency stability of the narrow linewidth Er:YAG laser was less than 40 MHz. It is a very compact laser source for methane differential absorption lidar.


Laser Physics Letters | 2013

Resonantly diode pumped Er:YAG laser systems emitting at 1645?nm for methane detection

Haro Fritsche; Oliver Lux; Xin Wang; Z Zhao; H. J. Eichler

We report on the development of compact and frequency-stable Er:YAG laser systems emitting in the eye-safe spectral region. Resonant cw diode pumping provides 4.5 W output power in cw operation and 2.2 mJ in Q-switched operation with pulse duration of about 140 ns. The application of intra-cavity etalons allows for wavelength tuning from 1645.22 to 1646.33 nm while the frequency stability accounts for less than 50 MHz. The potential of the erbium laser sources in terms of methane detection was evaluated under laboratory conditions by absorption measurements employing a multi-pass absorption cell. The experimental investigations were accompanied by theoretical studies on the influence of pressure broadening on the absorption behavior of methane. (Some figures may appear in colour only in the online journal)


Proceedings of SPIE | 2013

Compact high brightness diode laser emitting 500W from a 100μm fiber

Stefan Heinemann; Haro Fritsche; Bastian Kruschke; T. Schmidt; Wolfgang Gries

High power, high brightness diode lasers are beginning to compete with solid state lasers, i.e. disk and fiber lasers. The core technologies for brightness scaling of diode lasers are optical stacking and dense spectral combining (DSC), as well as improvements of the diode material. Diode lasers have the lowest cost of ownership, highest efficiency and most compact design among all lasers. Multiple Single Emitter (MSE) modules allow highest power and highest brightness diode lasers based on standard broad area diodes. Multiple single emitters, each rated at 12 W, are stacked in the fast axis with a monolithic slow axis collimator (SAC) array. Volume Bragg Gratings (VBG) stabilizes the wavelength and narrow the linewidth to less than 1 nm. Dichroic mirrors are used for dense wavelength multiplexing of 4 channels within 12 nm. Subsequently polarization multiplexing generates 450 W with a beam quality of 4.5 mm*mrad. Fast control electronics and miniaturized switched power supplies enable pulse rise times of less than 10 μs, with pulse widths continuously adjustable from 20 μs to cw. Further power scaling up to multi-kilowatts can be achieved by multiplexing up to 16 channels. The power and brightness of these systems enables the use of direct diode lasers for cutting and welding. The technologies can be transferred to other wavelengths to include 793 nm and 1530 nm. Optimized spectral combining enables further improvements in spectral brightness and power.


XIX International Symposium on High-Power Laser Systems and Applications 2012 | 2013

Ultrahigh brightness laser diode modules with narrow linewidth for resonant pumping Er:YAG lasers operating at 1.6 μm

Haro Fritsche; Bastian Kruschke; Oliver Lux; Casey Schuett; Wolfgang Gries; Hans J. Eichler

Eye safe laser radiation at 1.6 μm is realized by a resonantly pumped Er:YAG laser operating in cw- and q-switched mode employing high brightness laser diode modules. These modules provide high power and narrow bandwidth emission at 1.5 μm from a 100 μm fibers providing high pump efficiency.


Proceedings of SPIE | 2015

Beam combining techniques for high-power high-brightness diode lasers

Bastian Kruschke; Haro Fritsche; Holger Kern; Thomas Hagen; Ulrich Pahl; Ralf Koch; Andreas Grohe; Wolfgang Gries

Laser diodes are efficient and compact devices operating in a wide range of wavelengths. Boosting power by beam combining while maintaining good beam quality has been a long-standing challenge. We discuss various approaches for beam combining with emphasis on solutions pursued at DirectPhotonics. Our design employs single emitter diodes as they exhibit highest brightness and excellent reliability. In a first step, after fast axis collimation, all single emitter diodes on one subunit are stacked side-by-side by a monolithic slow-axis-collimator thus scaling the power without enhancing the brightness. The emissions of all diodes on a subunit are locked by a common Volume Bragg grating (VBG), resulting in a bandwidth < 0.5nm and high wavelength stability. Second, two subunits with identical wavelength are polarization coupled forming one wavelength channel with doubled power and brightness. Third, up to five channels are serially spectrally combined using dichroic filters. The stabilized wavelengths enable dense spectral combining, i.e. narrow channel spacing. This module features over 500W output power within 20nm bandwidth and a beam parameter product better than 3.5mm*mrad x 5mm*mrad (FA x SA) allowing for a 100μm, 0.15NA delivery fiber [1]. The small bandwidth of a 500-W-module enables subsequent coarse spectral combining by thin film filters, thus further enhancing the brightness. This potential can only be fully utilized by automated manufacturing ensuring reproducibility and high yield. A precision robotic system handles and aligns the individual fast axis lenses. Similar technologies are deployed for aligning the VBGs and dichroic filters.


Proceedings of SPIE | 2013

Efficient Er:YAG lasers at 1645.55 nm, resonantly pumped with narrow bandwidth diode laser modules at 1532 nm, for methane detection

Haro Fritsche; Oliver Lux; Casey Schuett; Stefan Heinemann; Wolfgang Gries; H. J. Eichler

Eye safe laser operation at 1645.55 nm (6077 cm-1) of resonantly pumped Er:YAG laser systems is demonstrated in cw and Q-switched operation. High brightness diode laser modules emitting at 1532 nm have been utilized as pump sources providing an absorption efficiency of up to 96%. This leads to an overall efficiency of the Er:YAG laser of 30%. For cw operation, 9 W output power is possible at pump power of 30 W while Q-switching results in generation of more than 7 mJ pulses with duration of 60 ns and repetition rate of 500 Hz. The Er:YAG laser systems have been applied for methane detection measurements demonstrating their feasibility for CH4-DIAL applications


Proceedings of SPIE | 2015

Direct diode lasers and their advantages for materials processing and other applications

Haro Fritsche; Fabio Ferrario; Ralf Koch; Bastian Kruschke; Ulrich Pahl; Silke Pflueger; Andreas Grohe; Wolfgang Gries; Florian Eibl; Stefanie Kohl; Michael Dobler

The brightness of diode lasers is improving continuously and has recently started to approach the level of some solid state lasers. The main technology drivers over the last decade were improvements of the diode laser output power and divergence, enhanced optical stacking techniques and system design, and most recently dense spectral combining. Power densities at the work piece exceed 1 MW/cm2 with commercially available industrial focus optics. These power densities are sufficient for cutting and welding as well as ablation. Single emitter based diode laser systems further offer the advantage of fast current modulation due their lower drive current compared to diode bars. Direct diode lasers may not be able to compete with other technologies as fiber or CO2-lasers in terms of maximum power or beam quality. But diode lasers offer a range of features that are not possible to implement in a classical laser. We present an overview of those features that will make the direct diode laser a very valuable addition in the near future, especially for the materials processing market. As the brightness of diode lasers is constantly improving, BPP of less than 5mm*mrad have been reported with multikW output power. Especially single emitter-based diode lasers further offer the advantage of very fast current modulation due to their low drive current and therefore low drive voltage. State of the art diode drivers are already demonstrated with pulse durations of <10μs and repetition rates can be adjusted continuously from several kHz up to cw mode while addressing power levels from 0-100%. By combining trigger signals with analog modulations nearly any kind of pulse form can be realized. Diode lasers also offer a wide, adaptable range of wavelengths, and wavelength stabilization. We report a line width of less than 0.1nm while the wavelength stability is in the range of MHz which is comparable to solid state lasers. In terms of applications, especially our (broad) wavelength combining technology for power scaling opens the window to new processes of cutting or welding and process control. Fast power modulation through direct current control allows pulses of several microseconds with hundreds of watts average power. Spot sizes of less than 100 μm are obtained at the work piece. Such a diode system allows materials processing with a pulse parameter range that is hardly addressed by any other laser system. High productivity material ablation with cost effective lasers is enabled. The wide variety of wavelengths, high brightness, fast power modulation and high efficiency of diode lasers results in a strong pull of existing markets, but also spurs the development of a wide variety of new applications.


Proceedings of SPIE | 2016

Building block diode laser concept for high brightness laser output in the kW range and its applications

Fabio Ferrario; Haro Fritsche; Andreas Grohe; Thomas Hagen; Holger Kern; Ralf Koch; Bastian Kruschke; Axel Reich; Dennis Sanftleben; Ronny Steger; Till Wallendorf; Wolfgang Gries

The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). In the next steps, further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with about 500 W launched into a 100 μm fiber with 0.15 NA. Higher power levels can be achieved by stacking those building blocks using the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific applications, materials processing such as cutting and welding of copper aluminum or steel and also medical application. Typical operating at wavelengths in the 9XX nm range, these systems are designed for and mainly used in cutting and welding applications, but adapted wavelength ranges such as 793 nm and 1530 nm are also offered. Around 15XX nm the diodes are already successfully used for resonant pumping of Erbium lasers [1]. Furthermore, the fully integrated electronic concept allows addressing further applications, as due to short lead lengths it is capable of generating very short μs pulses up to cw mode operation by simple software commands.


Applied Mechanics and Materials | 2015

Energy Efficient Laser Beam Welding of Metals with a Ultra-High Brightness Direct-Diode Laser System

Artur Laukart; Michael Dobler; Stefanie Kohl; Haro Fritsche; Andreas Grohe; Bastian Kruschke; Michael Schmidt

The rising level of automation in the automotive industry also involves the use of more and more machines and with that an increase in power consumption. This requires the employment of more efficient production processes with higher efficiency. Laser beam welding offers the opportunity to substitute conventional laser sources like solid state lasers with ultra-high brightness direct-diode laser systems which have the advantage of less power consumption at a comparable beam quality. However, the absorption of laser radiation on metallic surfaces depends on the wavelength, thus the effect of the direct-diode laser wavelength on the welding process has to be investigated. In our research the effect of the laser wavelength on energy efficiency was studied by means of numerical simulations. Furthermore, experimental investigations were carried out to validate the numerical solutions. Different aluminum alloys and steel materials which are used in the automotive environment were investigated within the experiments. Due to the current lack of direct-diode laser systems with a laser power comparable to conventional laser systems, numerical simulations were also used to analyze these future systems. Thus we were able to assess the increase of efficiency in laser beam welding which will be achievable with future high-power direct-diode laser systems.


Proceedings of SPIE | 2014

Generating a high brightness multi-kilowatt laser by dense spectral combination of VBG stabilized single emitter laser diodes

Haro Fritsche; Ralf Koch; B. Krusche; Fabio Ferrario; Andreas Grohe; Silke Pflueger; Wolfgang Gries

Generating high power laser radiation with diode lasers is commonly realized by geometrical stacking of diode bars, which results in high output power but poor beam parameter product (BPP). The accessible brightness in this approach is limited by the fill factor, both in slow and fast axis. By using a geometry that accesses the BPP of the individual diodes, generating a multi kilowatt diode laser with a BPP comparable to fiber lasers is possible. We will demonstrate such a modular approach for generating multi kilowatt lasers by combining single emitter diode lasers. Single emitter diodes have advantages over bars, mainly a simplified cooling, better reliability and a higher brightness per emitter. Additionally, because single emitters can be arranged in many different geometries, they allow building laser modules where the brightness of the single emitters is preserved. In order to maintain the high brightness of the single emitter we developed a modular laser design which uses single emitters in a staircase arrangement, then coupling two of those bases with polarization combination which is our basic module. Those modules generate up to 160 W with a BPP better than 7.5 mm*mrad. For further power scaling wavelength stabilization is crucial. The wavelength is stabilized with only one Volume Bragg Grating (VBG) in front of a base providing the very same feedback to all of the laser diodes. This results in a bandwidth of < 0.5 nm and a wavelength stability of better than 250 MHz over one hour. Dense spectral combination with dichroic mirrors and narrow channel spacing allows us to combine multiple wavelength channels, resulting in a 2 kW laser module with a BPP better than 7.5 mm*mrad, which can easily coupled into a 100 μm fiber and 0.15 NA.

Collaboration


Dive into the Haro Fritsche's collaboration.

Top Co-Authors

Avatar

Bastian Kruschke

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Oliver Lux

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Hans J. Eichler

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Casey Schuett

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

H. J. Eichler

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Stefanie Kohl

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Xin Wang

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Artur Laukart

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge