Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harold F. Dvorak is active.

Publication


Featured researches published by Harold F. Dvorak.


The New England Journal of Medicine | 1986

Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing.

Harold F. Dvorak

SOLID tumors are composed of two discrete but interdependent compartments: the malignant cells themselves and the stroma that they induce and in which they are dispersed.1 , 2 In tumors of epitheli...


Journal of Clinical Oncology | 2002

Vascular Permeability Factor/Vascular Endothelial Growth Factor: A Critical Cytokine in Tumor Angiogenesis and a Potential Target for Diagnosis and Therapy

Harold F. Dvorak

Vascular endothelial growth factor A (VEGF-A), the founding member of the vascular permeability factor (VPF)/VEGF family of proteins, is an important angiogenic cytokine with critical roles in tumor angiogenesis. This article reviews the literature with regard to VEGF-As multiple functions, the mechanisms by which it induces angiogenesis, and its current and projected roles in clinical oncology. VEGF-A is a multifunctional cytokine that is widely expressed by tumor cells and that acts through receptors (VEGFR-1, VEGFR-2, and neuropilin) that are expressed on vascular endothelium and on some other cells. It increases microvascular permeability, induces endothelial cell migration and division, reprograms gene expression, promotes endothelial cell survival, prevents senescence, and induces angiogenesis. Recently, VEGF-A has also been shown to induce lymphangiogenesis. Measurements of circulating levels of VEGF-A may have value in estimating prognosis, and VEGF-A and its receptors are potential targets for therapy. Recognized as the single most important angiogenic cytokine, VEGF-A has a central role in tumor biology and will likely have an important role in future approaches designed to evaluate patient prognosis. It may also become an important target for cancer therapy.


Nature Medicine | 2002

Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1

Aernout Luttun; Marc Tjwa; Lieve Moons; Yan Wu; Anne Angelillo-Scherrer; Fang Liao; Janice A. Nagy; Andrea T. Hooper; Josef Priller; Bert De Klerck; Veerle Compernolle; Evis Daci; Peter Bohlen; Mieke Dewerchin; Jean Marc Herbert; Roy A. Fava; Patrick Matthys; Geert Carmeliet; Desire Collen; Harold F. Dvorak; Daniel J. Hicklin; Peter Carmeliet

The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow–derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.


Cancer and Metastasis Reviews | 1993

Vascular permeability factor (VPF, VEGF) in tumor biology

Donald R. Senger; Livingston Van De Water; Lawrence F. Brown; Janice A. Nagy; Kiang-Teck J. Yeo; Tet-Kin Yeo; Brygida Berse; Robert W. Jackman; Ann M. Dvorak; Harold F. Dvorak

SummaryVascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a multifunctional cytokine expressed and secreted at high levels by many tumor cells of animal and human origin. As secreted by tumor cells, VPF/VEGF is a 34–42 kDa heparin-binding, dimeric, disulfide-bonded glycoprotein that acts directly on endothelial cells (EC) by way of specific receptors to activate phospholipase C and induce [Ca2+]i transients. Two high affinity VPF/VEGF receptors, both tyrosine kinases, have thus far been described. VPF/VEGF is likely to have a number of important roles in tumor biology related, but not limited to, the process of tumor angiogenesis. As a potent permeability factor, VPF/VEGF promotes extravasation of plasma fibrinogen, leading to fibrin deposition which alters the tumor extracellular matrix. This matrix promotes the ingrowth of macrophages, fibroblasts, and endothelial cells. Moreover, VPF/VEGF is a selective endothelial cell (EC) growth factorin vitro, and it presumably stimulates EC proliferationin vivo. Furthermore, VPF/VEGF has been found in animal and human tumor effusions by immunoassay and by functional assays and very likely accounts for the induction of malignant ascites. In addition to its role in tumors, VPF/VEGF has recently been found to have a role in wound healing and its expression by activated macrophages suggests that it probably also participates in certain types of chronic inflammation. VPF/VEGF is expressed in normal development and in certain normal adult organs, notably kidney, heart, adrenal gland and lung. Its functions in normal adult tissues are under investigation.


Current Topics in Microbiology and Immunology | 1999

Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis

Harold F. Dvorak; Janice A. Nagy; Dian Feng; Lawrence F. Brown; Ann M. Dvorak

This Chapter has reviewed the literature concerning VPF/VEGF as a potent vascular permeabilizing cytokine. In accord with this important role, microvessels have been found to be hyperpermeable to plasma proteins and other circulating macromolecules at sites where VPF/VEGF and its receptors are overexpressed, i.e., in tumors, healing wounds, retinopathies, many important inflammatory conditions and in certain physiological processes, such as ovulation and corpus luteum formation. Moreover, microvascular hyperpermeability to plasma proteins was shown to have an important consequence: the laying down of a fibrin-rich extracellular matrix. This provisional matrix, in turn, favors and supports the ingrowth of fibroblasts and endothelial cells which, together, transform the provisional matrix into the mature stroma characteristic of tumors and healed wounds. Finally, we have considered the pathways by which these and other circulating macromolecules cross the endothelium of normal and VPF/VEGF-permeabilized microvessels. These pathways include VVOs and trans-endothelial openings that have been variously interpreted as inter-endothelial cell gaps or trans-endothelial cell pores. At least some trans-endothelial cell pores may arise from VVOs. In conclusion, these data provide new insights into the mechanisms of angiogenesis and stroma formation, insights which are potentially applicable to a wide variety of disease states and which may lead to identification of new targets for therapeutic intervention.


Human Pathology | 1995

Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer

Lawrence F. Brown; Brygida Berse; Robert W. Jackman; Kathi Tognazzi; Anthony J. Guidi; Harold F. Dvorak; Donald R. Senger; James L. Connolly; Stuart J. Schnitt

Solid tumors must induce a vascular stroma to grow beyond a minimal size, and the intensity of the angiogenic response has been correlated with prognosis in breast cancer patients. Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), is a secreted protein that has been implicated in tumor-associated angiogenesis. Vascular permeability factor directly stimulates endothelial cell growth and also increases microvascular permeability, leading to the extravasation of plasma proteins, which alter the extracellular matrix in a manner that promotes angiogenesis. To determine whether VPF has a role in breast cancer, we used in situ hybridization to study VPF mRNA expression in normal breast tissue (13 specimens), comedo-type ductal carcinoma in situ (DCIS) (four specimens), infiltrating ductal carcinoma (12 specimens), infiltrating lobular carcinoma (two specimens), metastatic ductal carcinoma (three specimens) and metastatic lobular carcinoma (one specimen). Vascular permeability factor mRNA was expressed at a low level by normal duct epithelium but was expressed at high levels in tumor cells in all cases of comedo-type DCIS, infiltrating ductal carcinoma, and metastatic ductal carcinoma. In contrast, VPF mRNA was not expressed at high levels in infiltrating lobular carcinoma. We also used in situ hybridization to study the expression of two recently described endothelial cell surface VPF receptors, flt-1 and kdr. Vascular permeability factor receptor mRNA was strongly expressed in endothelial cells of small vessels adjacent to malignant tumor cells in DCIS, infiltrating ductal carcinoma, and metastatic ductal carcinoma. In contrast, no definite labeling for receptor mRNA was detected in infiltrating lobular carcinoma or nonmalignant breast tissue. The intense expression of VPF mRNA by breast carcinoma cells and of VPF receptor mRNA by endothelial cells of adjacent small blood vessels provides strong evidence linking VPF expression to the angiogenesis associated with comedo-type DCIS, infiltrating ductal, and metastatic ductal breast carcinoma.


The EMBO Journal | 2003

T1α/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema

Vivien Schacht; Maria I. Ramirez; Young-Kwon Hong; Satoshi Hirakawa; Dian Feng; Natasha L. Harvey; Mary C. Williams; Ann M. Dvorak; Harold F. Dvorak; Guillermo Oliver; Michael Detmar

Within the vascular system, the mucin‐type transmembrane glycoprotein T1α/podoplanin is predominantly expressed by lymphatic endothelium, and recent studies have shown that it is regulated by the lymphatic‐specific homeobox gene Prox1. In this study, we examined the role of T1α/podoplanin in vascular development and the effects of gene disruption in mice. T1α/podoplanin is first expressed at around E11.0 in Prox1‐positive lymphatic progenitor cells, with predominant localization in the luminal plasma membrane of lymphatic endothelial cells during later development. T1α/podoplanin−/− mice die at birth due to respiratory failure and have defects in lymphatic, but not blood vessel pattern formation. These defects are associated with diminished lymphatic transport, congenital lymphedema and dilation of lymphatic vessels. T1α/podoplanin is also expressed in the basal epidermis of newborn wild‐type mice, but gene disruption did not alter epidermal differentiation. Studies in cultured endothelial cells indicate that T1α/podoplanin promotes cell adhesion, migration and tube formation, whereas small interfering RNA‐mediated inhibition of T1α/podoplanin expression decreased lymphatic endothelial cell adhesion. These data identify T1α/podoplanin as a novel critical player that regulates different key aspects of lymphatic vasculature formation.


Journal of Experimental Medicine | 2002

Vascular Permeability Factor/Vascular Endothelial Growth Factor Induces Lymphangiogenesis as well as Angiogenesis

Janice A. Nagy; Eliza Vasile; Dian Feng; Christian Sundberg; Lawrence F. Brown; Michael Detmar; Joel Lawitts; Laura E. Benjamin; Xiaolian Tan; Eleanor J. Manseau; Ann M. Dvorak; Harold F. Dvorak

Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF, VEGF-A) is a multifunctional cytokine with important roles in pathological angiogenesis. Using an adenoviral vector engineered to express murine VEGF-A164, we previously investigated the steps and mechanisms by which this cytokine induced the formation of new blood vessels in adult immunodeficient mice and demonstrated that the newly formed blood vessels closely resembled those found in VEGF-A–expressing tumors. We now report that, in addition to inducing angiogenesis, VEGF-A164 also induces a strong lymphangiogenic response. This finding was unanticipated because lymphangiogenesis has been thought to be mediated by other members of the VPF/VEGF family, namely, VEGF-C and VEGF-D. The new “giant” lymphatics generated by VEGF-A164 were structurally and functionally abnormal: greatly enlarged with incompetent valves, sluggish flow, and delayed lymph clearance. They closely resembled the large lymphatics found in lymphangiomas/lymphatic malformations, perhaps implicating VEGF-A in the pathogenesis of these lesions. Whereas the angiogenic response was maintained only as long as VEGF-A was expressed, giant lymphatics, once formed, became VEGF-A independent and persisted indefinitely, long after VEGF-A expression ceased. These findings raise the possibility that similar, abnormal lymphatics develop in other pathologies in which VEGF-A is overexpressed, e.g., malignant tumors and chronic inflammation.


EXS | 1997

Vascular permeability factor/vascular endothelial growth factor:A multifunctional angiogenic cytokine

Lawrence F. Brown; Michael Detmar; Kevin P. Claffey; Janice A. Nagy; Dian Feng; Ann M. Dvorak; Harold F. Dvorak

VPF/VEGF is a multifunctional cytokine that contributes to angiogenesis by both direct and indirect mechanisms. On the one hand, VPF/VEGF stimulates the endothelial cells lining nearby microvessels to proliferate, to migrate and to alter their pattern of gene expression. On the other hand, VPF/VEGF renders these same microvascular endothelial cells hyperpermeable so that they spill plasma proteins into the extravascular space, leading to profound alterations in the extracellular matrix that favor angiogenesis. These same principles apply in tumors, in several examples of non-neoplastic pathology, and in physiological processes that involve angiogenesis and new stroma generation. In all of these examples, microvascular hyperpermeability and the introduction of a provisional, plasma-derived matrix precede and accompany the onset of endothelial cell division and new blood vessel formation. It would seem, therefore, that tumors have made use of fundamental pathways that developed in multicellular organisms for purposes of tissue defense, renewal and repair. VPF/VEGF, therefore, has taught us something new about angiogenesis; namely, that vascular hyperpermeability and consequent plasma protein extravasation are important--perhaps essential--elements in its generation. However, this finding raises a paradox. While VPF/VEGF induces vascular hyperpermeability, other potent angiogenic factors apparently do not, at least in sub-toxic concentrations that are more than sufficient to induce angiogenesis (Connolly et al., 1989a). Nonetheless, wherever angiogenesis has been studied, the newly generated vessels have been found to be hyperpermeable. How, therefore, do angiogenic factors other than VPF/VEGF lead to the formation of new and leaky blood vessels? We do not as yet have a complete answer to this question. One possibility is that at least some angiogenic factors mediate their effect by inducing or stimulating VPF/VEGF expression. In fact, there are already clear example of this. A number of putative angiogenic factors including small molecules (e.g. prostaglandins, adenosine) as well as many cytokines (e.g. TGF-alpha, bFGF, TGF-beta, TNF-alpha, KGF, PDGF) have all been shown to upregulate VPF/VEGF expression. Further studies that elucidate the crosstalk among various angiogenic factors are likely to contribute significantly to a better understanding of the mechanisms by which new blood vessels are formed in health and in disease.


Laboratory Investigation | 2000

Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor.

Anna Pettersson; Janice A. Nagy; Lawrence F. Brown; Christian Sundberg; Ellen S. Morgan; Jungles S; Robert Carter; José Eduardo Krieger; Eleanor J. Manseau; Harvey Vs; Isabelle A. Eckelhoefer; Dian Feng; Ann M. Dvorak; Richard C. Mulligan; Harold F. Dvorak

Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is an angiogenic cytokine with potential for the treatment of tissue ischemia. To investigate the properties of the new blood vessels induced by VPF/VEGF, we injected an adenoviral vector engineered to express murine VPF/VEGF164 into several normal tissues of adult nude mice or rats. A dose-dependent angiogenic response was induced in all tissues studied but was more intense and persisted longer (months) in skin and fat than in heart or skeletal muscle (≤3 weeks). The initial response (within 18 hours) was identical in all tissues studied and was characterized by microvascular hyperpermeability, edema, deposition of an extravascular fibrin gel, and the formation of enlarged, thin-walled pericyte-poor vessels (“mother” vessels). Mother vessels developed from preexisting microvessels after pericyte detachment and basement membrane degradation. Mother vessels were transient structures that evolved variably in different tissues into smaller daughter vessels, disorganized vessel tangles (glomeruloid bodies), and medium-sized muscular arteries and veins. Vascular structures closely resembling mother vessels and each mother vessel derivative have been observed in benign and malignant tumors, in other examples of pathological and physiological angiogenesis, and in vascular malformations. Together these data suggest that VPF/VEGF has a role in the pathogenesis of these entities. They also indicate that the angiogenic response induced by VPF/VEGF is heterogeneous and tissue specific. Finally, the muscular vessels that developed from mother vessels in skin and perimuscle fat have the structure of collaterals and could be useful clinically in the relief of tissue ischemia.

Collaboration


Dive into the Harold F. Dvorak's collaboration.

Top Co-Authors

Avatar

Ann M. Dvorak

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Janice A. Nagy

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence F. Brown

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Galli Sj

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kathi Tognazzi

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge