Harold M. Keener
Ohio State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harold M. Keener.
Journal of Microbiological Methods | 2001
Jann M. Ichida; Lucie Krizova; Colleen A LeFevre; Harold M. Keener; David Elwell; Edward H. Burtt
Native microbial populations can degrade poultry waste, but the process can be hastened by using feather-degrading bacteria. Strains of Bacillus licheniformis and a Streptomyces sp. isolated from the plumage of wild birds were grown in a liquid basal medium and used to inoculate feathers in compost bioreaction vessels. Control vessels had only basal medium added to the feathers, litter and straw. Temperature, ammonia, carbon and nitrogen were monitored for 4 weeks. Scanning electron microscopy of the feather samples showed more complete keratin-degradation, more structural damage, and earlier microbial biofilm formation on inoculated feathers than on uninoculated feathers. A diverse community of aerobic bacteria and fungi were cultured early, but declined rapidly. Thermophilic B. licheniformis and Streptomyces spp. were abundant throughout. Enteric gram-negative bacteria, (e.g., Salmonella, E. coli) originally found on waste feathers were not recovered after day 4. Vessel temperatures reached 64-71 degrees C within 36 h and stabilized at 50 degrees C. When tumble-mixed at day 14, renewed activity peaked at 59 degrees C and quickly dropped as available carbon was used. Feathers soaked in an inoculum of B. licheniformis and Streptomyces degraded more quickly and more completely than feathers that were not presoaked. Inoculation of feather waste could improve composting of the large volume of feather waste generated every year by poultry farms and processing plants.
Compost Science & Utilization | 2004
Frederick C. Michel; John Pecchia; Jerome Rigot; Harold M. Keener
Composting has become an increasingly popular manure management method for dairy farmers. However, the design of composting systems for farmers has been hindered by the limited amount of information on the quantities and volumes of compost produced relative to farm size and manure generated, and the impact of amendments on water, dry matter, volume and nitrogen losses during the composting process. Amendment type can affect the free air space, decomposition rate, temperature, C:N ratio and oxygen levels during composting. Amendments also initially increase the amount of material that must be handled. A better understanding of amendment effects should help farmers optimize, and potentially reduce costs associated with composting. In this study, freestall dairy manure (83% moisture) was amended with either hardwood sawdust or straw and composted for 110-155 days in turned windrows in four replicated trials that began on different dates. Initial C:N ratios of the windrows ranged from 25:1 to 50:1 due to variations in the source and N-content of the manure. Results showed that starting windrow volume for straw amended composts was 2.1 to 2.6 times greater than for sawdust amendment. Straw amended composts had low initial bulk densities with high free air space values of 75-93%. This led to lower temperatures and near ambient interstitial oxygen concentrations during composting. While all sawdust-amended composts self-heated to temperatures >55°C within 10 days, maintained these levels for more than 60 days and met EPA and USDA pathogen reduction guidelines, only two of the four straw amended windrows reached 55°C and none met the guidelines. In addition, sawdust amendment resulted in much lower windrow oxygen concentrations (< 5%) during the first 60 days. Both types of compost were stable after 100 days as indicated by CO2 evolution rates <0.5 mg CO2-C/g VS/d. Both types of amendments also led to extensive manure volume and weight reductions even after the weight of the added amendments were considered. However, moisture management proved critical in attaining reductions in manure weight during composting. Straw amendment resulted in greater volume decreases than sawdust amendment due to greater changes in bulk density and free air space. Through composting, farmers can reduce the volume and weights of material to be hauled by 50 to 80% based on equivalent nitrogen values of the stabilized compost as compared to unamended, uncomposted dairy manure. The initial total manure nitrogen lost during composting ranged from 7% to 38%. P and K losses were from 14 to 39% and from 1 to 38%, respectively. There was a significant negative correlation between C:N ratio and nitrogen loss (R2=0.78) and carbon loss (R2=0.86) during composting. An initial C:N ratio of greater than 40 is recommended to minimize nitrogen loss during dairy manure composting with sawdust or straw amendments.
Compost Science & Utilization | 2000
Kamil Ekinci; Harold M. Keener; D.L. Elwell
Short paper fiber (SPF), a by-product of the paper mill industry, was cocomposted with broiler litter (BL) to determine decomposition rate and NH3-N loss as functions of C/N ratio and pH of the compost mixes. The SPF generally had a high C/N ratio >200 while the BL, consisting of bedding material (sawdust) and poultry manure, had a low C/N ratio of 10–12. A total of seven series (27 tests) of pilot-scale studies were conducted using two different SPFs mixed with BL. Additives used for pH control were alum (aluminum sulfate), HiClay® Alumina and sulfuric acid. Mixing ratios [SPF/(SPF+BL), kg/kg(dry basis)] used were 0.8 to 0.4. Test conditions were C/N of 17 to 49, pH of 6.6 to 8.3, initial temperatures of −1 to 22°C, composting temperature of 60°C, water content of 50-55% w.b. and remixing two times per week. Composting temperature was controlled using forced ventilation with a high/low fan setting. Composting trials lasted two weeks. Ammonia loss, O2, CO2, compost temperatures and dry solids loss were measured. Evaluations of ammonia emissions versus initial C/N and pH showed: (1) NH3-N loss decreased as initial C/N increased, even above C/N = 38; (2) NH3-N loss decreased rapidly below pH = 7 and increased rapidly for initial pH above 8. Addition of alum and/or sulfuric acid was found to decrease NH3- N loss while HiClay® Alumina had little or no effect. Results on dry solids loss are not presented in this article.
Compost Science & Utilization | 1993
C. Marugg; M. Grebus; R.C. Hansen; Harold M. Keener; H. A. J. Hoitink
A new kinetic concept was applied to the yard waste composting process. Yard waste mixtures with different fractions of grass clippings were composted in pilot-scale vessels. Ammonia emissions were highest with high fractions of grass clippings. Calculation of reaction rate constants was based on heat and materials balances. Although the compost mass ratios (a dimensionless number that describes how far the process has advanced) of the mixtures after composting were similar, their chemical and biological analyses reveal differences. A first order reaction model is presented that can be used for plant design. The effects of temperature and particle size on process kinetics need to be investigated further.
Transactions of the ASABE | 1989
R. C. Hansen; Harold M. Keener; H. A. J. Hoitink
ABSTRACT Type of amendment, mixing method and initial dry solids content had the most significant impact on rate of poultry manure composting out of the seven controllable factors tested. The C/N ratio, stirring frequency, and particle size had the greatest impact on nitrogen retention. These conclusions are based on the two levels that were tested for each factor during a pilot study..
Compost Science & Utilization | 2002
Kamil Ekinci; Harold M. Keener; D.L. Elwell
Short paper fiber (SPF), a by-product of the paper mill industry, was cocomposted with broiler litter (BL) to determine the mixtures kinetic parameters as functions of initial C/N ratio and mixing ratio. An equation describing throughput capacity of composting facilities as a function of kinetic parameters was used to optimize mixing ratio (MiR) for maximization of composting short paper fiber. MiR [SPF/(SPF+BL), kg/kg(dry basis)] used were 0.8 to 0.4 in five series of pilot-scale studies. Test conditions were C/N of 15 to 49, pH of 7.0 to 8.0, composting temperature of 60°C, moisture of 50-55% w.b. and remixing 2 times per week. Composting trials lasted 2 weeks. Ammonia loss, O2, CO2, compost temperatures and dry solids loss were measured. Maximum decomposition, based on dry solids loss, occurred in the [C/N] range of 30-38. Maximum decomposition was 0.11 kg.kg−1.day−1 based on the first order kinetic model with β = 0.73 (MiR = 0.75). Evaluated β remained above the ash levels of the mixes for only MiR >0.25. Optimum mixing ratio was 0.7 (7 part SPF and 3 part BL) for maximization of short paper fiber composting. This occurred for a C/N of ≈35.
Applied Microbiology and Biotechnology | 2005
S. M. Tiquia; Jann M. Ichida; Harold M. Keener; D. L. Elwell; Edward H. Burtt; F. C. Michel
Composting is one of the more economical and environmentally safe methods of recycling feather waste generated by the poultry industry, since 90% of the feather weight consists of crude keratin protein, and feathers contain 15% N. However, the keratin in waste feathers is resistant to biodegradation and may require the addition of bacterial inocula to enhance the degradation process during composting. Two keratin-degrading bacteria isolated from plumage of wild songbirds and identified as Bacillus licheneformis (OWU 1411T) and Streptomyces sp. (OWU 1441) were inoculated into poultry feather composts (1.13×108 cfu g−1 feathers) and co-composted with poultry litter and straw in 200-l compost vessels. Composting temperatures, as well as CO2 and NH3 evolution, were measured in these vessels to determine the effects of inoculation on the rate and extent of poultry feather decomposition during composting. Terminal restriction fragment length polymorphisms of 16S rRNA genes were used to follow changes in microbial community structure during composting. The results indicated that extensive carbon conversion occurred in both treatments (55.5 and 56.1%). The addition of the bacterial inocula did not enhance the rate of waste feather composting. The microbial community structure over time was very similar in inoculated and uninoculated waste feather composts.
Transactions of the ASABE | 2007
Roderick Manuzon; Lingying Zhao; Harold M. Keener; Matthew J. Darr
Mitigation of ammonia (NH3) emissions from animal production buildings has been a challenge because of the large volume of low NH3 concentration laden air being released. Among emission mitigation technologies for concentrated animal feeding operations, acid spray scrubbers have the greatest potential for adaptation to the existing large animal facilities because of their lower fan airflow reduction, ability to simultaneously remove particulate and gaseous pollutants, and viability for zero or less waste generation by recycling effluents as liquid fertilizer. A multi-stage wet scrubber prototype that can be operated with a maximum of three stages was developed and optimized for reducing NH3 emissions using simulated conditions typically encountered at an animal building exhaust. The parameters optimized for a single-stage wet scrubber include nozzle type, nozzle operating pressure, sulfuric acid concentration, spray coverage, and air retention time. The optimized single-stage wet scrubber settings can remove emissions from 60% ±1% at 5 ppmv inlet NH3 concentration (IAC) to 27% ±2% at 100 ppmv IAC at a normal exhaust superficial air velocity (SAV) of 6.6 m s -1 . A high concentration of droplets inside the contact chamber increased the rate of inter-collision between droplets, which led to high droplet coagulation and decreased surface area for gas-liquid contact. These phenomena were prevented by operating the nozzles in the higher stages co-current to the airflow and by using fewer nozzles in higher stage. The two-stage and three-stage wet scrubbers were therefore optimized by determining the least number of nozzles in each stage that provided the most effective NH3 removal. The optimized two-stage scrubber could remove NH3 emissions from 60% ±0% at 5 ppmv IAC and 35% ±1% at 100 ppmv IAC. The optimized three-stage scrubber could remove emissions from 63% ±3% at 5 ppmv IAC and 36% ±3% at 100 ppmv IAC. Airflow retention time was found to significantly affect NH3 absorption. Reducing the superficial air velocity to 3.3 m s -1 from 6.6 m s -1 , which increased the air retention time from 0.2 s to 0.4 s, improved NH3 removal efficiencies to 98% ±3% at 5 ppmv IAC and 46% ±2% at 100 ppmv IAC for the single-stage scrubber. Similarly, the performance of the two-stage scrubber at a SAV of 3.3 m s -1 improved to 77% ±0% at 20 ppmv IAC and 57% ±1% at 100 ppm IAC. Lastly, the performance of the three-stage scrubber at a SAV of 3.3 m s -1 improved to 70% ±1% at 30 ppmv IAC and 64% ±1% at 100 ppmv IAC. It was observed that the three-stage wet scrubber did not increase the overall wet scrubber performance, as predicted theoretically. Further studies are needed so that the application of these scrubber designs becomes feasible for treating air emissions from animal buildings. The wet scrubber caused an additional backpressure of 27.5 Pa, resulting in about 8% airflow reduction for a fan operating at 12.5 Pa.
Compost Science & Utilization | 1998
J. H. Hong; Harold M. Keener; David Elwell
The effects of using intermittent aeration during composting on ammonia emissions and dry matter loss were determined during composting of hog manure amended with sawdust. Composting trials lasted three weeks and used pilot-scale 200 liter vessels (four). The experimental design used replication of two treatments, continuous aeration (CA) and intermittent aeration (IA), in two series of experiments (total of eight tests). In the CA sequence, compost temperatures were controlled at 60°C using feedback control on high and low air flow fans while the IA sequence consisted of five minutes of air flow followed by 55 minutes of rest. Mixing ratios of hog manure to sawdust were 1:l.l and 1:1.7 dry weight basis with resulting C:N ratios of 18.2 5 1.2 and 23.7 2 2.2 for the twoseries of tests. Airflow reduction was 63 percent for 1A compared to CA. Percent nitrogen loss between treatments were moderately statistically different (a = 0.14) with average percent nitrogen loss at 29.7 percent for CA and 23.0 percent for IA. Nitrogen loss as ammonia-N was higher for CA than IA (25.9 versus 14.3) but was not statistically different. No significant differences existed in dry solids loss between treatments and the physical and chemical properties of the compost produced from IA were similar to that from CA for each series. Results showed that IA compared to CA may be a practical way to reduce nitrogen loss and ammonia emissions during composting of swine manure with sawdust.
Compost Science & Utilization | 1996
David Elwell; Harold M. Keener; Robert C. Hansen
Three mixtures of ground yard trimmings (50 percent by volume in each mix), chicken manure (50, 27 and 40 percent) and potato processing, gelatin and bakery wastes were composted in four pilot-scale, 208 liter, insulated vessels (the first mixture was replicated). The mixes were obtained from a commercial composter and were studied both to obtain kinetic parameters for materials of this type and to help solve a problem of inconsistent maturity of product at the commercial operation. A 65°C set point controlled a high/low fan aeration system for each vessel. Temperature (at several points), air flow, oxygen consumption, carbon dioxide evolution and ammonia production were monitored. The vessels were weighed and materials were remixed twice each week during a four week composting period. At each remix, water was added to maintain a 50 percent by weight moisture content, and samples were taken for moisture content, volatile solids, chemical composition (including C:N ratio), pH and compost stability determin...