Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harri Mäkivuokko is active.

Publication


Featured researches published by Harri Mäkivuokko.


BMC Gastroenterology | 2009

Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers

Lotta Krogius-Kurikka; Anna Lyra; Erja Malinen; Johannes Aarnikunnas; Jarno Tuimala; Lars Paulin; Harri Mäkivuokko; Kajsa Kajander; Airi Palva

BackgroundA growing amount of scientific evidence suggests that microbes are involved in the aetiology of irritable bowel syndrome (IBS), and the gastrointestinal (GI) microbiota of individuals suffering from diarrhoea-predominant IBS (IBS-D) is distinguishable from other IBS-subtypes. In our study, the GI microbiota of IBS-D patients was evaluated and compared with healthy controls (HC) by using a high-resolution sequencing method. The method allowed microbial community analysis on all levels of microbial genomic guanine plus cytosine (G+C) content, including high G+C bacteria.MethodsThe collective faecal microbiota composition of ten IBS-D patients was analysed by examining sequences obtained using percent G+C (%G+C) -based profiling and fractioning combined with 16S rRNA gene clone library sequencing of 3267 clones. The IBS-D library was compared with an analogous healthy-control library of 23 subjects. Real-time PCR analysis was used to identify phylotypes belonging to the class Gammaproteobacteria and the order Coriobacteriales.ResultsSignificant differences were found between clone libraries of IBS-D patients and controls. The microbial communities of IBS-D patients were enriched in Proteobacteria and Firmicutes, but reduced in the number of Actinobacteria and Bacteroidetes compared to control. In particular, 16S rDNA sequences belonging to the family Lachnospiraceae within the phylum Firmicutes were in greater abundance in the IBS-D clone library.ConclusionsIn the microbiota of IBS-D sufferers, notable differences were detected among the prominent bacterial phyla (Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria) localized within the GI tract.


PLOS ONE | 2011

Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine.

Pirjo Wacklin; Harri Mäkivuokko; Noora Alakulppi; Janne Nikkilä; Heli Tenkanen; Jarkko Räbinä; Jukka Partanen; Kari Aranko; Jaana Mättö

Intestinal microbiota plays an important role in human health, and its composition is determined by several factors, such as diet and host genotype. However, thus far it has remained unknown which host genes are determinants for the microbiota composition. We studied the diversity and abundance of dominant bacteria and bifidobacteria from the faecal samples of 71 healthy individuals. In this cohort, 14 were non-secretor individuals and the remainders were secretors. The secretor status is defined by the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucus and other secretions. It is determined by fucosyltransferase 2 enzyme, encoded by the FUT2 gene. Non-functional enzyme resulting from a nonsense mutation in the FUT2 gene leads to the non-secretor phenotype. PCR-DGGE and qPCR methods were applied for the intestinal microbiota analysis. Principal component analysis of bifidobacterial DGGE profiles showed that the samples of non-secretor individuals formed a separate cluster within the secretor samples. Moreover, bifidobacterial diversity (p<0.0001), richness (p<0.0003), and abundance (p<0.05) were significantly reduced in the samples from the non-secretor individuals as compared with those from the secretor individuals. The non-secretor individuals lacked, or were rarely colonized by, several genotypes related to B. bifidum, B. adolescentis and B. catenulatum/pseudocatenulatum. In contrast to bifidobacteria, several bacterial genotypes were more common and the richness (p<0.04) of dominant bacteria as detected by PCR-DGGE was higher in the non-secretor individuals than in the secretor individuals. We showed that the diversity and composition of the human bifidobacterial population is strongly associated with the histo-blood group ABH secretor/non-secretor status, which consequently appears to be one of the host genetic determinants for the composition of the intestinal microbiota. This association can be explained by the difference between the secretor and non-secretor individuals in their expression of ABH and Lewis glycan epitopes in the mucosa.


British Journal of Nutrition | 2010

The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition

Harri Mäkivuokko; Kirsti Tiihonen; Soile Tynkkynen; Lars Paulin; Nina Rautonen

Ageing has been suggested to cause changes in the intestinal microbial community. In the present study, the microbiota of a previously well-defined group of elderly subjects aged between 70 and 85 years, both non-steroidal anti-inflammatory drugs (NSAID) users (n 9) and non-users (n 9), were further compared with young adults (n 14) with a mean age of 28 years, by two DNA-based techniques: percentage guanine+cytosine (%G+C) profiling and 16S rDNA sequencing. Remarkable changes in microbiota were described with both methods: compared with young adults a significant reduction in overall numbers of microbes in both elderly groups was measured. Moreover, the total number of microbes in elderly NSAID users was higher than in elderly without NSAID. In 16S rDNA sequencing, shifts in all major microbial phyla, such as lower numbers of Firmicutes and an increase in numbers of Bacteroidetes in the elderly were monitored. On the genus level an interesting link between reductions in the proportion of known butyrate producers belonging to Clostridium cluster XIVa, such as Roseburia and Ruminococcus, could be demonstrated in the elderly. Moreover, in the Actinobacteria group, lower numbers of Collinsella spp. were evident in the elderly subjects with NSAID compared both with young adults and the elderly without NSAID, suggesting that the use of NSAID along with age may also influence the composition of intestinal microbiota. Furthermore, relatively high numbers of Lactobacillus appeared only in the elderly subjects without NSAID. In general, the lowered numbers of microbial members in the major phyla, Firmicutes, together with changes in the epithelial layer functions can have a significant effect on the colon health of the elderly.


PLOS ONE | 2014

Faecal Microbiota Composition in Adults Is Associated with the FUT2 Gene Determining the Secretor Status

Pirjo Wacklin; Jarno Tuimala; Janne Nikkilä; Sebastian Tims; Harri Mäkivuokko; Noora Alakulppi; Pia Laine; Mirjana Rajilić-Stojanović; Lars Paulin; Willem M. de Vos; Jaana Mättö

The human intestine is colonised with highly diverse and individually defined microbiota, which likely has an impact on the host well-being. Drivers of the individual variation in the microbiota compositions are multifactorial and include environmental, host and dietary factors. We studied the impact of the host secretor status, encoded by fucosyltransferase 2 (FUT2) -gene, on the intestinal microbiota composition. Secretor status determines the expression of the ABH and Lewis histo-blood group antigens in the intestinal mucosa. The study population was comprised of 14 non-secretor (FUT2 rs601338 genotype AA) and 57 secretor (genotypes GG and AG) adult individuals of western European descent. Intestinal microbiota was analyzed by PCR-DGGE and for a subset of 12 non-secretor subjects and 12 secretor subjects additionally by the 16S rRNA gene pyrosequencing and the HITChip phylogenetic microarray analysis. All three methods showed distinct clustering of the intestinal microbiota and significant differences in abundances of several taxa representing dominant microbiota between the non-secretors and the secretors as well as between the FUT2 genotypes. In addition, the non-secretors had lower species richness than the secretors. The soft clustering of microbiota into enterotypes (ET) 1 and 3 showed that the non-secretors had a higher probability of belonging to ET1 and the secretors to ET3. Our study shows that secretor status and FUT2 polymorphism are associated with the composition of human intestinal microbiota, and appears thus to be one of the key drivers affecting the individual variation of human intestinal microbiota.


Nutrition and Cancer | 2005

In vitro effects on polydextrose by colonic bacteria and Caco-2 cell cyclooxygenase gene expression

Harri Mäkivuokko; Jussi Nurmi; Päivi Nurminen; Julian Stowell; Nina Rautonen

A 4-stage colon simulator and a cell culture-based human intestinal epithelial function model were combined to study the effects of a soluble fiber, polydextrose (PDX), on intestinal microbes and mucosal functions relevant to the risk of colon cancer. We observed sustained degradation of PDX throughout the different stages of the model. The fermentation was characterized by gradual degradation of PDX, production of short-chain fatty acids, and no increasing in putrefactive markers. We observed less marked effects in the microbial densities. When we applied colon fermentation metabolites obtained from the simulators with PDX to Caco-2 colon cancer cell line, a significant dose-dependent decreasing effect on cyclooxygenase-2 (COX-2) and an increasing effect on COX-3 expression levels were observed. PDX concentration appeared not to have effect on the expression levels of COX-1. Overexpression of COX-2 and decreased expression of COX-1 have been suggested to be characteristics of colon cancer. The exact physiological role of COX-3, an intron-retaining splice variant of COX-1, is not known, but it is suspected to play a role in transcriptional regulation of COX-1 and COX-2. In vitro modulation of COX expression by colon microbial fermentation products of polydextrose offers an interesting starting point for further studies on possible risk-decreasing effect of PDX on the development of colon cancer.


British Journal of Nutrition | 2007

Effect of polydextrose on intestinal microbes and immune functions in pigs

Francesca Fava; Harri Mäkivuokko; Hilkka Siljander-Rasi; Heli Putaala; Kirsti Tiihonen; Julian Stowell; Kieran M. Tuohy; Glenn R. Gibson; Nina Rautonen

Dietary fibre has been proposed to decrease risk for colon cancer by altering the composition of intestinal microbes or their activity. In the present study, the changes in intestinal microbiota and its activity, and immunological characteristics, such as cyclo-oxygenase (COX)-2 gene expression in mucosa, in pigs fed with a high-energy-density diet, with and without supplementation of a soluble fibre (polydextrose; PDX) (30 g/d) were assessed in different intestinal compartments. PDX was gradually fermented throughout the intestine, and was still present in the distal colon. Irrespective of the diet throughout the intestine, of the four microbial groups determined by fluorescent in situ hybridisation, lactobacilli were found to be dominating, followed by clostridia and Bacteroides. Bifidobacteria represented a minority of the total intestinal microbiota. The numbers of bacteria increased approximately ten-fold from the distal small intestine to the distal colon. Concomitantly, also concentrations of SCFA and biogenic amines increased in the large intestine. In contrast, concentrations of luminal IgA decreased distally but the expression of mucosal COX-2 had a tendency to increase in the mucosa towards the distal colon. Addition of PDX to the diet significantly changed the fermentation endproducts, especially in the distal colon, whereas effects on bacterial composition were rather minor. There was a reduction in concentrations of SCFA and tryptamine, and an increase in concentrations of spermidine in the colon upon PDX supplementation. Furthermore, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine.


BMC Microbiology | 2012

Association between the ABO blood group and the human intestinal microbiota composition

Harri Mäkivuokko; Sampo J. Lahtinen; Pirjo Wacklin; Elina Tuovinen; Heli Tenkanen; Janne Nikkilä; Marika Björklund; Kari Aranko; Arthur C. Ouwehand; Jaana Mättö

BackgroundThe mucus layer covering the human intestinal epithelium forms a dynamic surface for host-microbial interactions. In addition to the environmental factors affecting the intestinal equilibrium, such as diet, it is well established that the microbiota composition is individually driven, but the host factors determining the composition have remained unresolved.ResultsIn this study, we show that ABO blood group is involved in differences in relative proportion and overall profiles of intestinal microbiota. Specifically, the microbiota from the individuals harbouring the B antigen (secretor B and AB) differed from the non-B antigen groups and also showed higher diversity of the Eubacterium rectale-Clostridium coccoides (EREC) and Clostridium leptum (CLEPT) -groups in comparison with other blood groups.ConclusionsOur novel finding indicates that the ABO blood group is one of the genetically determined host factors modulating the composition of the human intestinal microbiota, thus enabling new applications in the field of personalized nutrition and medicine.


BMC Microbiology | 2009

Sequence analysis of percent G+C fraction libraries of human faecal bacterial DNA reveals a high number of Actinobacteria

Lotta Krogius-Kurikka; Anna Kassinen; Lars Paulin; Jukka Corander; Harri Mäkivuokko; Jarno Tuimala; Airi Palva

BackgroundThe human gastrointestinal (GI) tract microbiota is characterised by an abundance of uncultured bacteria most often assigned in phyla Firmicutes and Bacteroidetes. Diversity of this microbiota, even though approached with culture independent techniques in several studies, still requires more elucidation. The main purpose of this work was to study whether the genomic percent guanine and cytosine (%G+C) -based profiling and fractioning prior to 16S rRNA gene sequence analysis reveal higher microbiota diversity, especially with high G+C bacteria suggested to be underrepresented in previous studies.ResultsA phylogenetic analysis of the composition of the human GI microbiota of 23 healthy adult subjects was performed from a pooled faecal bacterial DNA sample by combining genomic %G+C -based profiling and fractioning with 16S rRNA gene cloning and sequencing. A total of 3199 partial 16S rRNA genes were sequenced. For comparison, 459 clones were sequenced from a comparable unfractioned sample. The most important finding was that the proportional amount of sequences affiliating with the phylum Actinobacteria was 26.6% in the %G+C fractioned sample but only 3.5% in the unfractioned sample. The orders Coriobacteriales, Bifidobacteriales and Actinomycetales constituted the 65 actinobacterial phylotypes in the fractioned sample, accounting for 50%, 47% and 3% of sequences within the phylum, respectively.ConclusionThis study shows that the %G+C profiling and fractioning prior to cloning and sequencing can reveal a significantly larger proportion of high G+C content bacteria within the clones recovered, compared with the unfractioned sample in the human GI tract. Especially the order Coriobacteriales within the phylum Actinobacteria was found to be more abundant than previously estimated with conventional sequencing studies.


Bioscience, Biotechnology, and Biochemistry | 2006

Effects of Lactose on Colon Microbial Community Structure and Function in a Four-Stage Semi-Continuous Culture System

Harri Mäkivuokko; Markku Saarinen; Arthur C. Ouwehand; Nina Rautonen

A semi-continuous four-channel colon simulator was used to study the effects of lactose for the first time on the growth and fermentation dynamics of colonic microbiota. In six separate simulations, lactose supplementation increased the total SCFA concentration by 3–5 fold as compared with the baseline in the respective vessels. The total bacterial density was inversely correlated with lactic acid production (P=0.003), while production of butyrate (P=0.007) and propionate (P=0.02) correlated with higher numbers of bacteria. A major shift in the microbial community structure in the lactose supplemented vessels was demonstrated by bacterial genomic %G+C-profiling of the total population, where lactose supplementation induced a clearly dominant peak in the bifidobacteria prominent area, %G+C 60–65. The transient shift to increased numbers of bifidobacteria (23–27%) of all bacteria in the first two vessels was also confirmed by the bifidobacteria-specific QPCR-method. In conclusion, lactose produced dramatic changes in microbiota composition and activity as compared with the baseline fermentation.


Beneficial Microbes | 2010

Synbiotic effects of lactitol and Lactobacillus acidophilus NCFM™ in a semi-continuous colon fermentation model

Harri Mäkivuokko; S. Forssten; M. Saarinen; Arthur C. Ouwehand; Nina Rautonen

The effects of Lactobacillus acidophilus NCFM™, lactitol, and the combination of lactitol and L. acidophilus NCFM™ were studied with a semi-continuous colon fermentation simulation; consisting of compartments mimicking, ascending, transverse, descending and sigmoid colon and their conditions with faecal inoculation. L. acidophilus NCFM™ was detected throughout the colon simulator. Lactitol was utilised early on by the microbes in the proximal part of the simulator. Lactitol increased the total numbers of microbes and bifidobacteria, and decreased clostridia cluster IV, while L. acidophilus NCFM™ alone decreased the numbers of clostridia cluster XIV. Combination treatment increased the numbers of bifidobacteria. Furthermore, concentrations of acetic acid, butyric acid and the sum of total short-chain fatty acids were increased by both lactitol-including treatments. The treatment with L. acidophilus NCFM™ alone increased the concentration of propionic acid and butyric acid. L. acidophilus NCFM™ tended to increase the total concentrations of biogenic amines, while lactitol suppressed production of biogenic amines also in the presence of L. acidophilus NCFM™. True synergistic effects are suggested in stimulation of the production of butyrate, an important microbial metabolite for colon health. In conclusion, lactitol as well as the combination of lactitol and L. acidophilus NCFM™ were found to exhibit complementary beneficial effects on the colon microbial composition and activity.

Collaboration


Dive into the Harri Mäkivuokko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Paulin

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Airi Palva

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janne Nikkilä

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge