Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harris H. Wang is active.

Publication


Featured researches published by Harris H. Wang.


Nature | 2009

Programming cells by multiplex genome engineering and accelerated evolution

Harris H. Wang; Farren J. Isaacs; Peter A. Carr; Zachary Z. Sun; George Xu; Craig R. Forest; George M. Church

The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-d-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.


Science | 2011

Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement

Farren J. Isaacs; Peter A. Carr; Harris H. Wang; Marc J. Lajoie; Bram Sterling; Laurens Kraal; Andrew C. Tolonen; Tara A. Gianoulis; Daniel B. Goodman; Nikos Reppas; Christopher J. Emig; Duhee Bang; Samuel J. Hwang; Michael C. Jewett; Joseph M. Jacobson; George M. Church

Template-mediated, genome construction and assembly created a strain with 80 precise codon changes. We present genome engineering technologies that are capable of fundamentally reengineering genomes from the nucleotide to the megabase scale. We used multiplex automated genome engineering (MAGE) to site-specifically replace all 314 TAG stop codons with synonymous TAA codons in parallel across 32 Escherichia coli strains. This approach allowed us to measure individual recombination frequencies, confirm viability for each modification, and identify associated phenotypes. We developed hierarchical conjugative assembly genome engineering (CAGE) to merge these sets of codon modifications into genomes with 80 precise changes, which demonstrate that these synonymous codon substitutions can be combined into higher-order strains without synthetic lethal effects. Our methods treat the chromosome as both an editable and an evolvable template, permitting the exploration of vast genetic landscapes.


Science | 2013

Genomically recoded organisms expand biological functions.

Marc J. Lajoie; Alexis J. Rovner; Daniel B. Goodman; Hans-Rudolf Aerni; Adrian D. Haimovich; Gleb Kuznetsov; Jaron A. Mercer; Harris H. Wang; Peter A. Carr; Joshua A. Mosberg; Nadin Rohland; Peter G. Schultz; Joseph M. Jacobson; Jesse Rinehart; George M. Church; Farren J. Isaacs

Changing the Code Easily and efficiently expanding the genetic code could provide tools to genome engineers with broad applications in medicine, energy, agriculture, and environmental safety. Lajoie et al. (p. 357) replaced all known UAG stop codons with synonymous UAA stop codons in Escherichia coli MG1655, as well as release factor 1 (RF1; terminates translation at UAG), thereby eliminating natural UAG translation function without impairing fitness. This made it possible to reassign UAG as a dedicated codon to genetically encode nonstandard amino acids while avoiding deleterious incorporation at native UAG positions. The engineered E. coli incorporated nonstandard amino acids into its proteins and showed enhanced resistance to bacteriophage T7. In a second paper, Lajoie et al. (p. 361) demonstrated the recoding of 13 codons in 42 highly expressed essential genes in E. coli. Codon usage was malleable, but synonymous codons occasionally were nonequivalent in unpredictable ways. Bacteria engineered to use nonstandard amino acids show increased resistance to bacteriophage attack. We describe the construction and characterization of a genomically recoded organism (GRO). We replaced all known UAG stop codons in Escherichia coli MG1655 with synonymous UAA codons, which permitted the deletion of release factor 1 and reassignment of UAG translation function. This GRO exhibited improved properties for incorporation of nonstandard amino acids that expand the chemical diversity of proteins in vivo. The GRO also exhibited increased resistance to T7 bacteriophage, demonstrating that new genetic codes could enable increased viral resistance.


Molecular Systems Biology | 2014

Genome-scale engineering for systems and synthetic biology

Kevin M. Esvelt; Harris H. Wang

Genome‐modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre‐defined locations across the genome. The handful of methods capable of targeted gene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome‐scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.


The ISME Journal | 2016

Challenges in microbial ecology: building predictive understanding of community function and dynamics

Stefanie Widder; Rosalind J. Allen; Thomas Pfeiffer; Thomas P. Curtis; Carsten Wiuf; William T. Sloan; Otto X. Cordero; Sam P. Brown; Babak Momeni; Wenying Shou; Helen Kettle; Harry J. Flint; Andreas F. Haas; Béatrice Laroche; Jan-Ulrich Kreft; Paul B. Rainey; Shiri Freilich; Stefan Schuster; Kim Milferstedt; Jan Roelof van der Meer; Tobias Groβkopf; Jef Huisman; Andrew Free; Cristian Picioreanu; Christopher Quince; Isaac Klapper; Simon Labarthe; Barth F. Smets; Harris H. Wang; Orkun S. Soyer

The importance of microbial communities (MCs) cannot be overstated. MCs underpin the biogeochemical cycles of the earth’s soil, oceans and the atmosphere, and perform ecosystem functions that impact plants, animals and humans. Yet our ability to predict and manage the function of these highly complex, dynamically changing communities is limited. Building predictive models that link MC composition to function is a key emerging challenge in microbial ecology. Here, we argue that addressing this challenge requires close coordination of experimental data collection and method development with mathematical model building. We discuss specific examples where model–experiment integration has already resulted in important insights into MC function and structure. We also highlight key research questions that still demand better integration of experiments and models. We argue that such integration is needed to achieve significant progress in our understanding of MC dynamics and function, and we make specific practical suggestions as to how this could be achieved.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Syntrophic exchange in synthetic microbial communities

Michael T. Mee; James J. Collins; George M. Church; Harris H. Wang

Significance Metabolic exchange between microbes is a crucial process driving the development of microbial ecosystems. The exchange of essential amino acids presents an opportunity to investigate the guiding principles underlying microbial trade in nature. In this study, we devised synthetic communities of Escherichia coli bacteria of increasing complexity to measure general properties enabling metabolic exchange of amino acids. We identified numerous syntrophic interactions that enable cooperative growth, which exhibited both positive and negative epistasis with increasing community complexity. Our results suggest that amino acid auxotrophy may be an evolutionarily optimizing strategy to reduce biosynthetic burden while promoting cooperative interactions between different bacteria in the microbiome. Metabolic crossfeeding is an important process that can broadly shape microbial communities. However, little is known about specific crossfeeding principles that drive the formation and maintenance of individuals within a mixed population. Here, we devised a series of synthetic syntrophic communities to probe the complex interactions underlying metabolic exchange of amino acids. We experimentally analyzed multimember, multidimensional communities of Escherichia coli of increasing sophistication to assess the outcomes of synergistic crossfeeding. We find that biosynthetically costly amino acids including methionine, lysine, isoleucine, arginine, and aromatics, tend to promote stronger cooperative interactions than amino acids that are cheaper to produce. Furthermore, cells that share common intermediates along branching pathways yielded more synergistic growth, but exhibited many instances of both positive and negative epistasis when these interactions scaled to higher dimensions. In more complex communities, we find certain members exhibiting keystone species-like behavior that drastically impact the community dynamics. Based on comparative genomic analysis of >6,000 sequenced bacteria from diverse environments, we present evidence suggesting that amino acid biosynthesis has been broadly optimized to reduce individual metabolic burden in favor of enhanced crossfeeding to support synergistic growth across the biosphere. These results improve our basic understanding of microbial syntrophy while also highlighting the utility and limitations of current modeling approaches to describe the dynamic complexities underlying microbial ecosystems. This work sets the foundation for future endeavors to resolve key questions in microbial ecology and evolution, and presents a platform to develop better and more robust engineered synthetic communities for industrial biotechnology.


Methods in Enzymology | 2011

Multiplexed Genome Engineering and Genotyping Methods: Applications for Synthetic Biology and Metabolic Engineering

Harris H. Wang; George M. Church

Engineering at the scale of whole genomes requires fundamentally new molecular biology tools. Recent advances in recombineering using synthetic oligonucleotides enable the rapid generation of mutants at high efficiency and specificity and can be implemented at the genome scale. With these techniques, libraries of mutants can be generated, from which individuals with functionally useful phenotypes can be isolated. Furthermore, populations of cells can be evolved in situ by directed evolution using complex pools of oligonucleotides. Here, we discuss ways to utilize these multiplexed genome engineering methods, with special emphasis on experimental design and implementation.


ACS Synthetic Biology | 2013

Yeast Oligo-mediated Genome Engineering (YOGE)

James E. DiCarlo; Andrew J. Conley; Merja Penttilä; Jussi Jäntti; Harris H. Wang; George M. Church

High-frequency oligonucleotide-directed recombination engineering (recombineering) has enabled rapid modification of several prokaryotic genomes to date. Here, we present a method for oligonucleotide-mediated recombineering in the model eukaryote and industrial production host Saccharomyces cerevisiae , which we call yeast oligo-mediated genome engineering (YOGE). Through a combination of overexpression and knockouts of relevant genes and optimization of transformation and oligonucleotide designs, we achieve high gene-modification frequencies at levels that only require screening of dozens of cells. We demonstrate the robustness of our approach in three divergent yeast strains, including those involved in industrial production of biobased chemicals. Furthermore, YOGE can be iteratively executed via cycling to generate genomic libraries up to 10 (5) individuals at each round for diversity generation. YOGE cycling alone or in combination with phenotypic selections or endonuclease-based negative genotypic selections can be used to generate modified alleles easily in yeast populations with high frequencies.


Gastroenterology | 2015

Proton Pump Inhibitors Alter Specific Taxa in the Human Gastrointestinal Microbiome: A Crossover Trial.

Daniel E. Freedberg; Nora C. Toussaint; Sway P. Chen; Adam J. Ratner; Susan Whittier; Timothy C. Wang; Harris H. Wang; Julian A. Abrams

We conducted an open-label crossover trial to test whether proton pump inhibitors (PPIs) affect the gastrointestinal microbiome to facilitate Clostridium difficile infection (CDI). Twelve healthy volunteers each donated 2 baseline fecal samples, 4 weeks apart (at weeks 0 and 4). They then took PPIs for 4 weeks (40 mg omeprazole, twice daily) and fecal samples were collected at week 8. Six individuals took the PPIs for an additional 4 weeks (from week 8 to 12) and fecal samples were collected from all subjects at week 12. Samples were analyzed by 16S ribosomal RNA gene sequencing. We found no significant within-individual difference in microbiome diversity when we compared changes during baseline vs changes on PPIs. There were, however, significant changes during PPI use in taxa associated with CDI (increased Enterococcaceae and Streptococcaceae, decreased Clostridiales) and taxa associated with gastrointestinal bacterial overgrowth (increased Micrococcaceae and Staphylococcaceae). In a functional analysis, there were no changes in bile acids on PPIs, but there was an increase in genes involved in bacterial invasion. These alterations could provide a mechanism by which PPIs predispose to CDI. ClinicalTrials.gov ID NCT01901276.


Nucleic Acids Research | 2012

Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection

Peter A. Carr; Harris H. Wang; Bram Sterling; Farren J. Isaacs; Marc J. Lajoie; George Xu; George M. Church; Joseph M. Jacobson

Genome-scale engineering of living organisms requires precise and economical methods to efficiently modify many loci within chromosomes. One such example is the directed integration of chemically synthesized single-stranded deoxyribonucleic acid (oligonucleotides) into the chromosome of Escherichia coli during replication. Herein, we present a general co-selection strategy in multiplex genome engineering that yields highly modified cells. We demonstrate that disparate sites throughout the genome can be easily modified simultaneously by leveraging selectable markers within 500 kb of the target sites. We apply this technique to the modification of 80 sites in the E. coli genome.

Collaboration


Dive into the Harris H. Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc J. Lajoie

Wyss Institute for Biologically Inspired Engineering

View shared research outputs
Top Co-Authors

Avatar

Peter A. Carr

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jimin Park

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Jacobson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge