Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter A. Carr is active.

Publication


Featured researches published by Peter A. Carr.


Nature | 2009

Programming cells by multiplex genome engineering and accelerated evolution

Harris H. Wang; Farren J. Isaacs; Peter A. Carr; Zachary Z. Sun; George Xu; Craig R. Forest; George M. Church

The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-d-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3u2009days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.


Cell | 1999

Inhibiting HIV-1 Entry: Discovery of D-Peptide Inhibitors that Target the gp41 Coiled-Coil Pocket

Debra M. Eckert; Vladimir N. Malashkevich; Lily H. Hong; Peter A. Carr; Peter S. Kim

The HIV-1 gp41 protein promotes viral entry by mediating the fusion of viral and cellular membranes. A prominent pocket on the surface of a central trimeric coiled coil within gp41 was previously identified as a potential target for drugs that inhibit HIV-1 entry. We designed a peptide, IQN17, which properly presents this pocket. Utilizing IQN17 and mirror-image phage display, we identified cyclic, D-peptide inhibitors of HIV-1 infection that share a sequence motif. A 1.5 A cocrystal structure of IQN17 in complex with a D-peptide, and NMR studies, show that conserved residues of these inhibitors make intimate contact with the gp41 pocket. Our studies validate the pocket per se as a target for drug development. IQN17 and these D-peptide inhibitors are likely to be useful for development and identification of a new class of orally bioavailable anti-HIV drugs.


Science | 2011

Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement

Farren J. Isaacs; Peter A. Carr; Harris H. Wang; Marc J. Lajoie; Bram Sterling; Laurens Kraal; Andrew C. Tolonen; Tara A. Gianoulis; Daniel B. Goodman; Nikos Reppas; Christopher J. Emig; Duhee Bang; Samuel J. Hwang; Michael C. Jewett; Joseph M. Jacobson; George M. Church

Template-mediated, genome construction and assembly created a strain with 80 precise codon changes. We present genome engineering technologies that are capable of fundamentally reengineering genomes from the nucleotide to the megabase scale. We used multiplex automated genome engineering (MAGE) to site-specifically replace all 314 TAG stop codons with synonymous TAA codons in parallel across 32 Escherichia coli strains. This approach allowed us to measure individual recombination frequencies, confirm viability for each modification, and identify associated phenotypes. We developed hierarchical conjugative assembly genome engineering (CAGE) to merge these sets of codon modifications into genomes with 80 precise changes, which demonstrate that these synonymous codon substitutions can be combined into higher-order strains without synthetic lethal effects. Our methods treat the chromosome as both an editable and an evolvable template, permitting the exploration of vast genetic landscapes.


Science | 2013

Genomically recoded organisms expand biological functions.

Marc J. Lajoie; Alexis J. Rovner; Daniel B. Goodman; Hans-Rudolf Aerni; Adrian D. Haimovich; Gleb Kuznetsov; Jaron A. Mercer; Harris H. Wang; Peter A. Carr; Joshua A. Mosberg; Nadin Rohland; Peter G. Schultz; Joseph M. Jacobson; Jesse Rinehart; George M. Church; Farren J. Isaacs

Changing the Code Easily and efficiently expanding the genetic code could provide tools to genome engineers with broad applications in medicine, energy, agriculture, and environmental safety. Lajoie et al. (p. 357) replaced all known UAG stop codons with synonymous UAA stop codons in Escherichia coli MG1655, as well as release factor 1 (RF1; terminates translation at UAG), thereby eliminating natural UAG translation function without impairing fitness. This made it possible to reassign UAG as a dedicated codon to genetically encode nonstandard amino acids while avoiding deleterious incorporation at native UAG positions. The engineered E. coli incorporated nonstandard amino acids into its proteins and showed enhanced resistance to bacteriophage T7. In a second paper, Lajoie et al. (p. 361) demonstrated the recoding of 13 codons in 42 highly expressed essential genes in E. coli. Codon usage was malleable, but synonymous codons occasionally were nonequivalent in unpredictable ways. Bacteria engineered to use nonstandard amino acids show increased resistance to bacteriophage attack. We describe the construction and characterization of a genomically recoded organism (GRO). We replaced all known UAG stop codons in Escherichia coli MG1655 with synonymous UAA codons, which permitted the deletion of release factor 1 and reassignment of UAG translation function. This GRO exhibited improved properties for incorporation of nonstandard amino acids that expand the chemical diversity of proteins in vivo. The GRO also exhibited increased resistance to T7 bacteriophage, demonstrating that new genetic codes could enable increased viral resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Short constrained peptides that inhibit HIV-1 entry.

Samuel K. Sia; Peter A. Carr; Andrea G. Cochran; Vladimir N. Malashkevich; Peter S. Kim

Peptides corresponding to the C-terminal heptad repeat of HIV-1 gp41 (C-peptides) are potent inhibitors of HIV-1 entry into cells. Their mechanism of inhibition involves binding in a helical conformation to the central coiled coil of HIV-1 gp41 in a dominant–negative manner. Short C-peptides, however, have low binding affinity for gp41 and poor inhibitory activity, which creates an obstacle to the development of small drug-like C-peptides. To improve the inhibitory potency of short C-peptides that target the hydrophobic pocket region of gp41, we use two strategies to stabilize the C-peptide helix: chemical crosslinking and substitution with unnatural helix-favoring amino acids. In this study, the short linear peptide shows no significant inhibitory activity, but a constrained peptide (C14linkmid) inhibits cell–cell fusion at micromolar potency. Structural studies confirm that the constrained peptides bind to the gp41 hydrophobic pocket. Calorimetry reveals that, of the peptides analyzed, the most potent are those that best balance the changes in binding enthalpy and entropy, and surprisingly not those with the highest helical propensity as measured by circular dichroism spectroscopy. Our study reveals the thermodynamic basis of inhibition of an HIV C-peptide, demonstrates the utility of constraining methods for a short antiviral peptide inhibitor, and has implications for the future design of constrained peptides.


Nucleic Acids Research | 2007

Parallel gene synthesis in a microfluidic device

David S Kong; Peter A. Carr; Lu Chen; Shuguang Zhang; Joseph M. Jacobson

The ability to synthesize custom de novo DNA constructs rapidly, accurately and inexpensively is highly desired by researchers, as synthetic genes and longer DNA constructs are enabling to numerous powerful applications in both traditional molecular biology and the emerging field of synthetic biology. However, the current cost of de novo synthesis—driven largely by reagent and handling costs—is a significant barrier to the widespread availability of such technology. In this work, we demonstrate, to our knowledge, the first gene synthesis in a microfluidic environment. The use of microfluidic technology greatly reduces reaction volumes and the corresponding reagent and handling costs. Additionally, microfluidic technology enables large numbers of complex reactions to be performed in parallel. Here, we report the fabrication of a multi-chamber microfluidic device and its use in carrying out the syntheses of several DNA constructs. Genes up to 1u2009kb in length were synthesized in parallel at minute starting oligonucleotide concentrations (10–25u2009nM) in four 500u2009nl reactors. Such volumes are one to two orders of magnitude lower than those utilized in conventional gene synthesis. The identity of all target genes was verified by sequencing, and the resultant error rate was determined to be 1 per 560 bases.


Nucleic Acids Research | 2012

Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection

Peter A. Carr; Harris H. Wang; Bram Sterling; Farren J. Isaacs; Marc J. Lajoie; George Xu; George M. Church; Joseph M. Jacobson

Genome-scale engineering of living organisms requires precise and economical methods to efficiently modify many loci within chromosomes. One such example is the directed integration of chemically synthesized single-stranded deoxyribonucleic acid (oligonucleotides) into the chromosome of Escherichia coli during replication. Herein, we present a general co-selection strategy in multiplex genome engineering that yields highly modified cells. We demonstrate that disparate sites throughout the genome can be easily modified simultaneously by leveraging selectable markers within 500 kb of the target sites. We apply this technique to the modification of 80 sites in the E. coli genome.


PLOS ONE | 2015

DNA Assembly in 3D Printed Fluidics

William G Patrick; Alec A. K. Nielsen; Steven Keating; Taylor Levy; Che-Wei Wang; Jaime Rivera; Octavio Mondragon-Palomino; Peter A. Carr; Christopher A. Voigt; Neri Oxman; David S Kong

The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from


Trends in Biotechnology | 2017

Enabling Microfluidics: from Clean Rooms to Makerspaces

David Iii I Walsh; David S Kong; Shashi K. Murthy; Peter A. Carr

0.61 to


Nature Biotechnology | 2017

Open-source, community-driven microfluidics with Metafluidics

David S Kong; Todd Thorsen; Jonathan Babb; Scott T. Wick; Jeremy Jonathan Gam; Ron Weiss; Peter A. Carr

5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology.

Collaboration


Dive into the Peter A. Carr's collaboration.

Top Co-Authors

Avatar

Joseph M. Jacobson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David S Kong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bijan Zakeri

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott T. Wick

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Timothy K. Lu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Alec A. K. Nielsen

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian Y. Chow

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge