Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harry L. Stern is active.

Publication


Featured researches published by Harry L. Stern.


Bulletin of the American Meteorological Society | 2002

Surface Heat Budget of the Arctic Ocean

Taneil Uttal; Judith A. Curry; Miles G. McPhee; Donald K. Perovich; Richard E. Moritz; James A. Maslanik; Peter S. Guest; Harry L. Stern; James A. Moore; Rene Turenne; Andreas Heiberg; Mark C. Serreze; Donald P. Wylie; Ola Persson; Clayton A. Paulson; Christopher Halle; James H. Morison; Patricia A. Wheeler; Alexander Makshtas; Harold Welch; Matthew D. Shupe; Janet M. Intrieri; Knut Stamnes; Ronald W. Lindsey; Robert Pinkel; W. Scott Pegau; Timothy P. Stanton; Thomas C. Grenfeld

A summary is presented of the Surface Heat Budget of the Arctic Ocean (SHEBA) project, with a focus on the field experiment that was conducted from October 1997 to October 1998. The primary objective of the field work was to collect ocean, ice, and atmospheric datasets over a full annual cycle that could be used to understand the processes controlling surface heat exchanges—in particular, the ice–albedo feedback and cloud–radiation feedback. This information is being used to improve formulations of arctic ice–ocean–atmosphere processes in climate models and thereby improve simulations of present and future arctic climate. The experiment was deployed from an ice breaker that was frozen into the ice pack and allowed to drift for the duration of the experiment. This research platform allowed the use of an extensive suite of instruments that directly measured ocean, atmosphere, and ice properties from both the ship and the ice pack in the immediate vicinity of the ship. This summary describes the project goal...


Journal of Climate | 2009

Arctic Sea Ice Retreat in 2007 Follows Thinning Trend

R. W. Lindsay; Jinlun Zhang; Axel Schweiger; Michael Steele; Harry L. Stern

The minimum of Arctic sea ice extent in the summer of 2007 was unprecedented in the historical record. A coupled ice–ocean model is used to determine the state of the ice and ocean over the past 29 yr to investigate the causes of this ice extent minimum within a historical perspective. It is found that even though the 2007 ice extent was strongly anomalous, the loss in total ice mass was not. Rather, the 2007 ice mass loss is largely consistent with a steady decrease in ice thickness that began in 1987. Since then, the simulated mean September ice thickness within the Arctic Ocean has declined from 3.7 to 2.6 m at a rate of 0.57 m decade 1 . Both the area coverage of thin ice at the beginning of the melt season and the total volume of ice lost in the summer have been steadily increasing. The combined impact of these two trends caused a large reduction in the September mean ice concentration in the Arctic Ocean. This created conditions during the summer of 2007 that allowed persistent winds to push the remaining ice from the Pacific side to the Atlantic side of the basin and more than usual into the Greenland Sea. This exposed large areas of open water, resulting in the record ice extent anomaly.


Conservation Biology | 2015

Arctic marine mammal population status, sea ice habitat loss, and conservation recommendations for the 21st century

Kristin L. Laidre; Harry L. Stern; Kit M. Kovacs; Lloyd F. Lowry; Sue E. Moore; Eric V. Regehr; Steven H. Ferguson; Øystein Wiig; Peter L. Boveng; Robyn P. Angliss; Erik W. Born; D Litovka; Lori T. Quakenbush; Christian Lydersen; Dag Vongraven; Fernando Ugarte

Abstract Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979–2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5–10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation.


Journal of Geophysical Research | 1997

The force balance of sea ice in a numerical model of the Arctic Ocean

Michael Steele; Jinlun Zhang; D. A. Rothrock; Harry L. Stern

The balance of forces in the sea ice model of Hibler [1979] is examined. The model predicts that internal stress gradients are an important force in much of the Arctic Ocean except in summer, when they are significant only off the northern coasts of Greenland and the Canadian Archipelago. A partition of the internal stress gradient between the pressure gradient and the viscous terms reveals that both are significant, although they operate on very different timescales. The acceleration term is generally negligible, while the sum of Coriolis plus sea surface tilt is small. Thus the seasonal average force balance in fall, winter, and spring is mostly between three terms of roughly equal magnitudes: air drag, water drag, and internal stress gradients. This is also true for the monthly average force balance. However, we find that there is a transition around the weekly timescale and that on a daily basis the force balance at a particular location and time is often between only two terms: either between air drag and water drag or between air drag and internal stress gradients. The model is in agreement with the observations of Thorndike and Colony [1982] in that the correlation between geostrophic wind forcing and the models ice velocity field is high. This result is discussed in the context of the force balance; we show that the presence of significant internal stress gradients does not preclude high wind-ice correlation. A breakdown of the internal stress gradient into component parts reveals that the shear viscous force is far from negligible, which casts strong doubt on the theoretical validity of the cavitating fluid approximation (in which this component is neglected). Finally, the role of ice pressure is examined by varying the parameter P*. We find a strong sensitivity in terms of the force balance, as well as ice thickness and velocity.


Journal of Geophysical Research | 1995

Open water production in Arctic sea ice: Satellite measurements and model parameterizations

Harry L. Stern; D. A. Rothrock; R. Kwok

Sequential synthetic aperture radar (SAR) images from the ERS 1 spacecraft were routinely used as input to the Geophysical Processor System at the Alaska SAR Facility from 1992 through 1994 to produce sea ice displacement vectors on a 5-km grid. We have combined some 5000 of these products, consisting of nearly 700,000 displacement vectors, into a set of 914 strips or mosaics of ice motion that span (mostly) 3-day intervals. For each strip we compute the opening and closing of leads based on the change in area of the 5-km grid cells. We also compute the area-averaged deformation or strain invariants of the motion. The small-scale (several kilometer) lead activity can be parameterized fairly well in terms of the large-scale (several hundred kilometer) strain invariants. Sea ice models implicitly contain such a parameterization through their constitutive equations. The well-known model of Hibler (1979) that uses a viscous-plastic rheology and an elliptical yield curve is in good agreement with our data. The variance in the data about this theoretical relationship is less than that suggested by a random model of sea ice motion. The data also indicate that shearing deformation contributes to the opening and closing of leads. Models with two categories or levels of ice thickness generally do not take shearing deformation into account in the evolution of the ice concentration, nor do they redistribute ice as a result of ridging. We show how to add these features to two-level models. However, we argue that three-level models consisting of open water, thin ice, and thick ice are much better suited to the proper treatment of open water production, and we present such a model.


Biology Letters | 2007

Increasing abundance of bowhead whales in West Greenland

Mads Peter Heide-Jørgensen; Kristin L. Laidre; David L. Borchers; Filipa I. P. Samarra; Harry L. Stern

In April 2006, a dedicated survey of bowhead whales (Balaena mysticetus) was conducted on the former whaling ground in West Greenland to determine the current wintering population abundance. This effort included a double platform aerial survey design, satellite tracking of the movements of nine whales, and estimation of high-resolution surface time from 14 whales instrumented with time–depth recorders. Bowhead whales were estimated to spend an average of 24% (cv=0.03) of the time at or above 2 m depth, the maximum depth at which they can be seen on the trackline. This resulted in a fully corrected abundance estimate of 1229 (95% CI: 495–2939) bowhead whales when the availability factor was applied and sightings missed by observers were corrected. This surprisingly large population estimate is puzzling given that the change in abundance cannot be explained by a recent or rapid growth in population size. One possible explanation is that the population, which demonstrates high age and sex segregation, has recently attained a certain threshold size elsewhere, and a higher abundance of mature females appears on the winter and spring feeding ground in West Greenland. This in combination with the latest severe reduction in sea ice facilitating access to coastal areas might explain the surprising increase in bowhead whale abundance in West Greenland.


IEEE Transactions on Geoscience and Remote Sensing | 1995

Determination of the age distribution of sea ice from Lagrangian observations of ice motion

R. Kwok; D. A. Rothrock; Harry L. Stern; G. F. Cunningham

A procedure for monitoring the local age distribution of the Arctic sea ice cover is presented. The age distribution specifies the area covered by ice in different age classes. In our approach, a regular array of grid points is defined initially on the first image of a long time series, and an ice tracker finds the positions of those points in all subsequent images of the series. These Lagrangian points mark the corners of a set of cells that move and deform with the ice cover. The area of each cell changes with each new image or time step. A positive change indicates that ice in a new age class was formed in the cell. A negative change is assumed to have ridged the youngest ice in the cell, reducing its area. The ice in each cell ages as it progresses through the time series. The area of multiyear ice in each cell is computed using an ice classification algorithm. Any area that is not accounted for by the young ice or multiyear ice is assigned to a category of older first-year ice. We thus have a fine age resolution in the young end of the age distribution, and coarse resolution for older ice. The age distribution of the young ice can be converted to a thickness distribution using a simple empirical relation between accumulated freezing-degree days and ice thickness, or using a more complicated thermodynamic model. We describe a general scheme for implementing this procedure for the Arctic Ocean from fall freeze-up until the onset of melt in the spring. The concept is illustrated with a time series of five ERS-1 SAR images spanning a period of 12 days. Such a scheme could be implemented with RADARSAT SAR imagery to provide basin-wide ice age and thickness information.


Journal of Atmospheric and Oceanic Technology | 2003

The RADARSAT Geophysical Processor System: Quality of sea ice trajectory and deformation estimates

R. W. Lindsay; Harry L. Stern

Abstract NASAs RADARSAT Geophysical Processor System (RGPS) uses sequential synthetic aperture radar (SAR) images to track the trajectories of some 30 000 points on the Arctic sea ice for periods of up to 6 months. Much of the Arctic basin is imaged and tracked every 3 days. The result is a highly detailed picture of how the sea ice moves and deforms. The points are initially spaced 10 km apart and are organized into four-cornered cells. The area and the strain rates are calculated for each cell for each new observation of its corners. The accuracy of the RGPS ice tracking, area changes, and deformation estimates is needed to make the dataset useful for analysis, model validation, and data assimilation. Two comparisons are made to assess the accuracy. The first compares the tracking performed at two different facilities (the Jet Propulsion Laboratory in Pasadena, California, and the Alaska SAR Facility in Fairbanks, Alaska), between which the primary difference is the operator intervention. The error sta...


Journal of Geophysical Research | 2002

Sea ice kinematics and surface properties from RADARSAT synthetic aperture radar during the SHEBA drift

Harry L. Stern; Richard E. Moritz

[1] Satellite data are important for providing the large-scale context of the Surface Heat Budget of the Arctic Ocean (SHEBA) station and for characterizing the spatial variability of the sea ice in its vicinity. The Canadian RADARSAT satellite collected 195 synthetic aperture radar (SAR) images of the SHEBA site over the course of the 1 year drift. The RADARSAT Geophysical Processor System (RGPS) used these images to compute the spatial pattern of ice motion within 100 km of the SHEBA station by tracking features in sequential images. From the ice motion data the divergence and shear of the pack ice are estimated. The divergence is large from November to January, followed by a gradual convergence from February through July. The character of the ice motion changes at the end of July, from piecewise rigid motion to free drift. The ice motion reverts to its winterlike character in late September. Thus the “kinematic” summer runs from late July to late September. The radar backscatter also goes through seasonal transitions, capturing the abrupt onset of melt (29 May) and freeze-up (15 August). The concentration of multiyear ice is about 94% in the fall, and its backscatter signature remains stable through spring. Multiyear and first-year ice cannot be distinguished during the summer melt season, when the mean backscatter is negatively correlated with the surface air temperature. The “thermodynamic” summer runs from late May to mid-August. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4275 Oceanography: General: Remote sensing and electromagnetic processes (0689); 4540 Oceanography: Physical: Ice mechanics and air/sea/ ice exchange processes; KEYWORDS: sea ice; synthetic aperture radar (SAR); SHEBA


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus)

Kristin L. Laidre; Erik W. Born; Eliezer Gurarie; Øystein Wiig; Rune Dietz; Harry L. Stern

Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male–male and male–female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male–male encounter, while having little impact on male–female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.

Collaboration


Dive into the Harry L. Stern's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. W. Lindsay

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mads Peter Heide-Jørgensen

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Jinlun Zhang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Axel Schweiger

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kwok

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Øystein Wiig

Norwegian University of Life Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge