Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harry Vrieling is active.

Publication


Featured researches published by Harry Vrieling.


Molecular and Cellular Biology | 1989

DNA strand specificity for UV-induced mutations in mammalian cells

Harry Vrieling; M.L. van Rooijen; N. A. Groen; Małgorzata Z. Zdzienicka; J.W.I.M. Simons; P.H.M. Lohman; A.A. van Zeeland

The influence of DNA repair on the molecular nature of mutations induced by UV light (254 nm) was investigated in UV-induced hprt mutants from UV-sensitive Chinese hamster cells (V-H1) and the parental line (V79). The nature of point mutations in hprt exon sequences was determined for 19 hprt mutants of V79 and for 17 hprt mutants of V-H1 cells by sequence analysis of in vitro-amplified hprt cDNA. The mutation spectrum in V79 cells consisted of single- and tandem double-base pair changes, while in V-H1 cells three frameshift mutations were also detected. All base pair changes in V-H1 mutants were due to GC----AT transitions. In contrast, in V79 all possible classes of base pair changes except the GC----CG transversion were present. In this group, 70% of the mutations were transversions. Since all mutations except one did occur at dipyrimidine sites, the assumption was made that they were caused by UV-induced photoproducts at these sites. In V79 cells, 11 out of 17 base pair changes were caused by photoproducts in the nontranscribed strand of the hprt gene. However, in V-H1 cells, which are completely deficient in the removal of pyrimidine dimers from the hprt gene and which show a UV-induced mutation frequency enhanced seven times, 10 out of 11 base pair changes were caused by photoproducts in the transcribed strand of the hprt gene. We hypothesize that this extreme strand specificity in V-H1 cells is due to differences in fidelity of DNA replication of the leading and the lagging strand. Furthermore, we propose that in normal V79 cells two processes determine the strand specificity of UV-induced mutations in the hprt gene, namely preferential repair of the transcribed strand of the hprt gene and a higher fidelity of DNA replication of the nontranscribed strand compared with the transcribed strand.


Mutation Research Letters | 1985

Mutations induced by X-rays at the HPRT locus in cultured Chinese hamster cells are mostly large deletions.

Harry Vrieling; J.W.I.M. Simons; Fré Arwert; A.T. Natarajan; A.A. van Zeeland

We investigated the molecular basis of 19 X-ray-induced HPRT-deficient mutants of V79 Chinese hamster cells with Southern hybridisation techniques. 12 of those mutants suffer from a big deletion (greater than 10 kb) of HPRT DNA sequences. Cytological studies of chromosome preparations of those 12 deletion mutants showed that in at least 3 of these mutants part of the long arm of the X-chromosome was lost. After correction for spontaneous arising mutations we estimate that at least 70-80% of X-ray-induced mutations are caused by large deletions.


Journal of Molecular Biology | 1992

Spectrum of spontaneously occurring mutations in the hprt gene of V79 Chinese hamster cells.

Li-Hua Zhang; Harry Vrieling; Albert A. van Zeeland; Dag Jenssen

A total of 76 independent spontaneous mutants in the hprt gene of V79 Chinese hamster cells have been analyzed. These mutants were obtained in two different laboratories, 17 and 59 mutants in sets 1 and 2, respectively, under different cell culture conditions. Mutation analysis was performed by amplification of hprt cDNA with the polymerase chain reaction and direct sequencing of the products. The data obtained showed similar spectra of spontaneous mutations in both sets of mutants, suggesting that culture does not play a major role in spontaneous mutagenesis. The majority of the mutations were base substitutions (greater than 60%), with twice as many transversions as transitions. Base changes were evenly distributed throughout the structural gene, including the splice junctions. All types of base substitutions appeared in comparable frequencies, except for A.T to T.A transversions, which were almost absent. The fraction of deletion mutations was low (13%). A striking feature of the observed mutation spectra is that one third of the spontaneous mutations analyzed involved aberrant splicing of the hprt primary transcript, with exon 4 being affected most frequently, indicating that splice mutations are a common mechanism of mutation in the hprt gene.


Mutation Research | 1988

Nucleotide sequence determination of point mutations at the mouse HPRT locus using in vitro amplification of HPRT mRNA sequences

Harry Vrieling; J.W.I.M. Simons; A.A. van Zeeland

Cloning of genomic and cDNA sequences of mammalian genes has made it possible to analyze at the molecular level mutations induced by radiation and chemical mutagens. The X-linked HPRT gene is very suitable for these investigations because in addition to the availability of cell culture systems, HPRT mutants can also be obtained directly from the lymphocytes of mouse and man. Recently a new technique has been introduced by Saiki and co-workers which allows the cloning and sequencing of small specific DNA segments from total genomic DNA after in vitro amplification of those segments up to 200,000-fold (Saiki et al., 1985). We have adapted this so-called polymerase chain reaction (PCR) procedure in such a way that the entire mouse HPRT-coding region could be amplified, cloned and sequenced. Instead of genomic DNA, we have used RNA as template in the PCR reactions. This allows us to detect point mutations in HPRT exon sequences in a very efficient way, since the DNA sequence of all 9 exons, which are scattered over 34 kb of DNA, can be obtained from only one amplification experiment. We studied the nature of 3 N-ethyl-N-nitrosourea (ENU)-induced HPRT mutants from cultured mouse lymphoma cells. One contains an A:T----G:C transition, the second an A:T----T:A transversion, whereas the third mutant is the result of abnormal splicing events, probably due to a mutation in the 3 splice site of the first intron.


Mutation Research Letters | 1990

Mutations affecting RNA splicing in man are detected more frequently in somatic than in germ cells

Anna Rossi; Joyphi Thijssen; A.D. Tates; Harry Vrieling; A.T. Natarajan; P.H.M. Lohman; Albert A. van Zeeland

The spectrum of DNA sequence alterations in the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene of HPRTase-deficient T-lymphocytes isolated from the blood of healthy male donors was determined and compared with the spectrum found in patients suffering from genetic diseases (Lesch-Nyhan syndrome or gouty arthritis) associated with a mutation in the same gene. Most of the T-cell mutants still produced hprt mRNA which was converted into cDNA and used for DNA sequence analysis after amplification using the polymerase chain reaction (PCR). In 39% of the 31 analyzed T-cell mutants of normal donors 1 or 2 exons were completely or partially deleted from hprt mRNA, probably because of a mutation in a splice acceptor site. Among patients suffering from the Lesch-Nyhan syndrome or gouty arthritis, the class of splice mutations amounts only to 7%. These data suggest that carriers of splice mutations often do not show the characteristics of HPRTase deficiency associated with these genetic diseases, because correctly spliced hprt mRNA is still produced at a low level.


Oncogene | 2000

Age-dependent spontaneous mutagenesis in Xpc mice defective in nucleotide excision repair.

Susan W.P. Wijnhoven; Hanneke J. M. Kool; L.H.F. Mullenders; Albert A. van Zeeland; Errol C. Friedberg; Gijsbertus T. J. van der Horst; Harry van Steeg; Harry Vrieling

DNA damages caused by cellular metabolites and environmental agents induce mutations, that may predispose to cancer. Nucleotide excision repair (NER) is a major cellular defence mechanism acting on a variety of DNA lesions. Here, we show that spontaneous mutant frequencies at the Hprt gene increased 30-fold in T-lymphocytes of 1 year old Xpc−/− mice, possessing only functional transcription-coupled repair (TCR). Hprt mutant frequencies in Xpa−/− and Csb−/− mice that both have a defect in this NER subpathway, remained low during ageing. In contrast to current models, the elevated mutation rate in Xpc−/− mice does not lead to an increased tumour incidence or premature ageing.


Mutation Research | 1992

The gene encoding hypoxanthine-guanine phosphoribosyltransferase as target for mutational analysis: PCR cloning and sequencing of the cDNA from the rat

Jacob G. Jansen; Harry Vrieling; Albert A. van Zeeland; G.R. Mohn

In this paper, the cloning and nucleotide sequence of the cDNA of the rat gene coding for hypoxanthine-guanine phosphoribosyltransferase (hprt) is reported. Knowledge of the cDNA sequence is needed, among other reasons, for the molecular analysis of hprt mutations occurring in rat cells, such as skin fibroblasts isolated according to the granuloma pouch assay. The rat hprt cDNA was synthesized and used as a template for in vitro amplification by PCR. For this purpose, oligonucleotide primers were used, the nucleotide sequences of which were based on mouse and hamster hprt cDNA sequences. Sequence analysis of 1146 bp of the amplified rat hprt cDNA showed a single open reading frame of 654 bp, encoding a protein of 218 amino acids. In the predicted rat hprt amino acid sequence, the proposed functional domains for 5-phosphoribosyl-1-pyrophosphate (PRPP) and nucleotide binding in phosphoribosylating enzymes as well as a region near the carboxyl terminal part were highly conserved when compared with amino acid sequences of other mammalian hprt proteins. Analysis of hprt amino acid sequences of 727 independent hprt mutants from human, mouse, hamster and rat cells bearing single amino acid substitutions revealed that a large variety of amino acid changes were located in these highly conserved regions, suggesting that all 3 domains are important for proper catalytic activity. The suitability of the hprt gene as target for mutational analysis is demonstrated by the fact that amino acid changes in at least 151 of the 218 amino acid residues of the hprt protein result in a 6-thioguanine-resistant phenotype.


Mutation Research | 1991

Strand-specific mutation spectra in repair-proficient and repair-deficient hamster cells

P. Menichini; Harry Vrieling; A.A. van Zeeland

The mutation spectrum induced by UV light has been determined at the hprt locus for both cultured normal (AA8) and UV-sensitive (UV-5) Chinese hamster ovary cells to investigate the effect of DNA repair on the nature of induced mutations. DNA base-pair changes of 23 hprt mutants of AA8 and of 28 hprt mutants of UV-5 were determined by sequence analysis of in vitro amplified hprt cDNA. Almost all mutants in AA8 carried single-base substitutions, transitions and transversions accounting for 38% and 62% of the base changes, respectively. In contrast, in repair-deficient cells (UV-5) tandem and nontandem double mutations represented a considerable portion of the mutations observed (30%), whereas the vast majority of base-pair substitutions were GC greater than AT transitions (87%). Moreover, 5 splice mutants and 2 frameshift mutations were found in the UV-5 collection. In almost all mutants analyzed base changes were located at dipyrimidine sites where UV photoproducts could have been formed. In AA8 the photolesions causing mutations were predominantly located in the nontranscribed strand whereas a strong bias for mutation induction towards photolesions in the transcribed strand was found in UV-5. We hypothesize that preferential removal of lesions from the transcribed strand of the hprt gene accounts for the observed DNA strand specificity of mutations in repair-proficient cells. Furthermore, differences in the degree of misincorporation opposite a lesion for lagging and leading strand DNA synthesis may dictate the pattern of UV-induced mutations in the absence of DNA repair.


Mutation Research | 1991

Hierarchies of DNA repair in mammalian cells : biological consequences

L.H.F. Mullenders; Harry Vrieling; J. Venema; Albert A. van Zeeland

Mammalian cells exposed to genotoxic agents exhibit heterogeneous levels of repair of certain types of DNA damage in various genomic regions. For UV-induced cyclobutane pyrimidine dimers we propose that at least three levels of repair exist: (1) slow repair of inactive (X-chromosomal) genes, (2) fast repair of active housekeeping genes, and (3) accelerated repair of the transcribed strand of active genes. These hierarchies of repair may be related to chromosomal banding patterns as obtained by Giemsa staining. The possible consequences of defective DNA repair in one or more of these levels may be manifested in different clinical features associated with UV-sensitive human syndromes. Moreover, molecular analysis of hprt mutations reveals that mutations are primarily generated by DNA damage in the poorly repaired non-transcribed strand of the gene.


Mutation Research-dna Repair | 1992

(6-4) Photoproducts and not cyclobutane pyrimidine dimers are the main UV-induced mutagenic lesions in Chinese hamster cells

Małgorzata Z. Zdzienicka; J. Venema; David L. Mitchell; Anneke van Hoffen; Albert A. van Zeeland; Harry Vrieling; L.H.F. Mullenders; P.H.M. Lohman; J.W.I.M. Simons

A partial revertant (RH1-26) of the UV-sensitive Chinese hamster V79 cell mutant V-H1 (complementation group 2) was isolated and characterized. It was used to analyze the mutagenic potency of the 2 major UV-induced lesions, cyclobutane pyrimidine dimers and (6-4) photoproducts. Both V-H1 and RH1-26 did not repair pyrimidine dimers measured in the genome overall as well as in the active hprt gene. Repair of (6-4) photoproducts from the genome overall was slower in V-H1 than in wild-type V79 cells, but was restored to normal in RH1-26. Although V-H1 cells have a 7-fold enhanced mutagenicity, RH1-26 cells, despite the absence of pyrimidine dimer repair, have a slightly lower level of UV-induced mutagenesis than observed in wild-type V79 cells. The molecular nature of hprt mutations and the DNA-strand specificity were similar in V79 and RH1-26 cells but different from that of V-H1 cells. Since in RH1-26 as well as in V79 cells most hprt mutations were induced by lesions in the non-transcribed DNA strand, in contrast to the transcribed DNA strand in V-H1, the observed mutation-strand bias suggests that normally (6-4) photoproducts are preferentially repaired in the transcribed DNA strand. The dramatic influence of the impaired (6-4) photoproduct repair in V-H1 on UV-induced mutability and the molecular nature of hprt mutations indicate that the (6-4) photoproduct is the main UV-induced mutagenic lesion.

Collaboration


Dive into the Harry Vrieling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.T. Natarajan

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob G. Jansen

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge