Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hartawan Laksmono is active.

Publication


Featured researches published by Hartawan Laksmono.


Science | 2013

Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

Jan Kern; Roberto Alonso-Mori; Rosalie Tran; Johan Hattne; Richard J. Gildea; Nathaniel Echols; Carina Glöckner; Julia Hellmich; Hartawan Laksmono; Raymond G. Sierra; Benedikt Lassalle-Kaiser; Sergey Koroidov; Alyssa Lampe; Guangye Han; Sheraz Gul; Dörte DiFiore; Despina Milathianaki; Alan Fry; A. Miahnahri; Donald W. Schafer; Marc Messerschmidt; M. Marvin Seibert; Jason E. Koglin; Dimosthenis Sokaras; Tsu-Chien Weng; Jonas A. Sellberg; Matthew J. Latimer; Ralf W. Grosse-Kunstleve; Petrus H. Zwart; William E. White

One Protein, Two Probes A central challenge in the use of x-ray diffraction to characterize macromolecular structure is the propensity of the high-energy radiation to damage the sample during data collection. Recently, a powerful accelerator-based, ultrafast x-ray laser source has been used to determine the geometric structures of small protein crystals too fragile for conventional diffraction techniques. Kern et al. (p. 491, published online 14 February) now pair this method with concurrent x-ray emission spectroscopy to probe electronic structure, as well as geometry, and were able to characterize the metal oxidation states in the oxygen-evolving complex within photosystem II crystals, while simultaneously verifying the surrounding protein structure. A powerful x-ray laser source can extract the geometry and electronic structure of metalloenzymes prior to damaging them. Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.


Nature | 2014

Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature

Jonas A. Sellberg; Congcong Huang; Trevor A. McQueen; N. D. Loh; Hartawan Laksmono; Daniel Schlesinger; Raymond G. Sierra; Dennis Nordlund; Christina Y. Hampton; Dmitri Starodub; Daniel P. DePonte; Martin Beye; Chen Chen; Andrew V. Martin; A. Barty; Kjartan Thor Wikfeldt; Thomas M. Weiss; Chiara Caronna; Jan M. Feldkamp; L. B. Skinner; M. Marvin Seibert; M. Messerschmidt; Garth J. Williams; Sébastien Boutet; Lars G. M. Pettersson; M. J. Bogan; Anders Nilsson

Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1,2,3 ). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the ‘no man’s land’ that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of  kelvin in the previously largely unexplored no man’s land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.


Nature Communications | 2014

Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy

Jan Kern; Rosalie Tran; Roberto Alonso-Mori; Sergey Koroidov; Nathaniel Echols; Johan Hattne; Mohamed Ibrahim; Sheraz Gul; Hartawan Laksmono; Raymond G. Sierra; Richard J. Gildea; Guangye Han; Julia Hellmich; Benedikt Lassalle-Kaiser; Ruchira Chatterjee; Aaron S. Brewster; Claudiu A. Stan; Carina Glöckner; Alyssa Lampe; Dörte DiFiore; Despina Milathianaki; Alan Fry; M. Marvin Seibert; Jason E. Koglin; Erik Gallo; Jens Uhlig; Dimosthenis Sokaras; Tsu-Chien Weng; Petrus H. Zwart; David E. Skinner

The dioxygen we breathe is formed from water by its light-induced oxidation in photosystem II. O2 formation takes place at a catalytic manganese cluster within milliseconds after the photosystem II reaction center is excited by three single-turnover flashes. Here we present combined X-ray emission spectra and diffraction data of 2 flash (2F) and 3 flash (3F) photosystem II samples, and of a transient 3F′ state (250 μs after the third flash), collected under functional conditions using an X-ray free electron laser. The spectra show that the initial O-O bond formation, coupled to Mn-reduction, does not yet occur within 250 μs after the third flash. Diffraction data of all states studied exhibit an anomalous scattering signal from Mn but show no significant structural changes at the present resolution of 4.5 Å. This study represents the initial frames in a molecular movie of the structural changes during the catalytic reaction in photosystem II.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

Jan Kern; Roberto Alonso-Mori; Julia Hellmich; Rosalie Tran; Johan Hattne; Hartawan Laksmono; Carina Glöckner; Nathaniel Echols; Raymond G. Sierra; Jonas A. Sellberg; Benedikt Lassalle-Kaiser; Richard J. Gildea; Pieter Glatzel; Ralf W. Grosse-Kunstleve; Matthew J. Latimer; Trevor A. McQueen; Dörte DiFiore; Alan Fry; Marc Messerschmidt; A. Miahnahri; Donald W. Schafer; M. Marvin Seibert; Dimosthenis Sokaras; Tsu-Chien Weng; Petrus H. Zwart; William E. White; Paul D. Adams; Michael J. Bogan; Sébastien Boutet; Garth J. Williams

Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation.


Acta Crystallographica Section D-biological Crystallography | 2012

Nanoflow electrospinning serial femtosecond crystallography

Raymond G. Sierra; Hartawan Laksmono; Jan Kern; Rosalie Tran; Johan Hattne; Roberto Alonso-Mori; Benedikt Lassalle-Kaiser; Carina Glöckner; Julia Hellmich; Donald W. Schafer; Nathaniel Echols; Richard J. Gildea; Ralf W. Grosse-Kunstleve; Jonas A. Sellberg; Trevor A. McQueen; Alan Fry; Marc Messerschmidt; A. Miahnahri; M. Marvin Seibert; Christina Y. Hampton; Dmitri Starodub; N. Duane Loh; Dimosthenis Sokaras; Tsu Chien Weng; Petrus H. Zwart; Pieter Glatzel; Despina Milathianaki; William E. White; Paul D. Adams; Garth J. Williams

An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14-3.1 µl min(-1) to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min(-1) and diffracted to beyond 4 Å resolution, producing 14,000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.


Nature | 2016

Structure of photosystem II and substrate binding at room temperature.

Iris D. Young; Mohamed Ibrahim; Ruchira Chatterjee; Sheraz Gul; Franklin Fuller; Sergey Koroidov; Aaron S. Brewster; Rosalie Tran; Roberto Alonso-Mori; Thomas Kroll; Tara Michels-Clark; Hartawan Laksmono; Raymond G. Sierra; Claudiu A. Stan; Rana Hussein; Miao Zhang; Lacey Douthit; Markus Kubin; Casper de Lichtenberg; Long Vo Pham; Håkan Nilsson; Mun Hon Cheah; Dmitriy Shevela; Claudio Saracini; Mackenzie A. Bean; Ina Seuffert; Dimosthenis Sokaras; Tsu-Chien Weng; Ernest Pastor; Clemens Weninger

Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4), in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.


Nature Methods | 2014

Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers

Johan Hattne; Nathaniel Echols; Rosalie Tran; Jan Kern; Richard J. Gildea; Aaron S. Brewster; Roberto Alonso-Mori; Carina Glöckner; Julia Hellmich; Hartawan Laksmono; Raymond G. Sierra; Benedikt Lassalle-Kaiser; Alyssa Lampe; Guangye Han; Sheraz Gul; Dörte DiFiore; Despina Milathianaki; Alan Fry; A. Miahnahri; William E. White; Donald W. Schafer; M. Marvin Seibert; Jason E. Koglin; Dimosthenis Sokaras; Tsu-Chien Weng; Jonas A. Sellberg; Matthew J. Latimer; Pieter Glatzel; Petrus H. Zwart; Ralf W. Grosse-Kunstleve

X-ray free-electron laser (XFEL) sources enable the use of crystallography to solve three-dimensional macromolecular structures under native conditions and without radiation damage. Results to date, however, have been limited by the challenge of deriving accurate Bragg intensities from a heterogeneous population of microcrystals, while at the same time modeling the X-ray spectrum and detector geometry. Here we present a computational approach designed to extract meaningful high-resolution signals from fewer diffraction measurements.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode

Roberto Alonso-Mori; Jan Kern; Richard J. Gildea; Dimosthenis Sokaras; Tsu Chien Weng; Benedikt Lassalle-Kaiser; Rosalie Tran; Johan Hattne; Hartawan Laksmono; Julia Hellmich; Carina Glöckner; Nathaniel Echols; Raymond G. Sierra; Donald W. Schafer; Jonas A. Sellberg; C. J. Kenney; R. Herbst; J. Pines; P. Hart; S. Herrmann; Ralf W. Grosse-Kunstleve; Matthew J. Latimer; Alan Fry; Marc Messerschmidt; A. Miahnahri; M. Marvin Seibert; Petrus H. Zwart; William E. White; Paul D. Adams; Michael J. Bogan

The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.


Journal of Physical Chemistry Letters | 2015

Anomalous Behavior of the Homogeneous Ice Nucleation Rate in “No-Man’s Land”

Hartawan Laksmono; Trevor A. McQueen; Jonas A. Sellberg; N. Duane Loh; Congcong Huang; Daniel Schlesinger; Raymond G. Sierra; Christina Y. Hampton; Dennis Nordlund; M. Beye; Andrew V. Martin; Anton Barty; M. Marvin Seibert; Marc Messerschmidt; Garth J. Williams; Sébastien Boutet; Katrin Amann-Winkel; Thomas Loerting; Lars G. M. Pettersson; Michael J. Bogan; Anders Nilsson

We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit TH by cooling micrometer-sized droplets (microdroplets) evaporatively at 103–104 K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water’s diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 106–107 K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed “fragile-to-strong” transition anomaly in water.


Nature Methods | 2016

Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II

Raymond G. Sierra; Cornelius Gati; Hartawan Laksmono; E. Han Dao; Sheraz Gul; Franklin Fuller; Jan Kern; Ruchira Chatterjee; Mohamed Ibrahim; Aaron S. Brewster; Iris D. Young; Tara Michels-Clark; Andrew Aquila; Mengning Liang; Mark S. Hunter; Jason E. Koglin; Sébastien Boutet; Elia A Junco; Brandon Hayes; Michael J. Bogan; Christina Y. Hampton; Elisabetta Viani Puglisi; Nicholas K. Sauter; Claudiu A. Stan; Athina Zouni; Junko Yano; Vittal K. Yachandra; S. Michael Soltis; Joseph D. Puglisi; Hasan Demirci

We describe a concentric-flow electrokinetic injector for efficiently delivering microcrystals for serial femtosecond X-ray crystallography analysis that enables studies of challenging biological systems in their unadulterated mother liquor. We used the injector to analyze microcrystals of Geobacillus stearothermophilus thermolysin (2.2-Å structure), Thermosynechococcus elongatus photosystem II (<3-Å diffraction) and Thermus thermophilus small ribosomal subunit bound to the antibiotic paromomycin at ambient temperature (3.4-Å structure).

Collaboration


Dive into the Hartawan Laksmono's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Alonso-Mori

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jonas A. Sellberg

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Kern

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael J. Bogan

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Garth J. Williams

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marc Messerschmidt

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sébastien Boutet

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Benedikt Lassalle-Kaiser

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Rosalie Tran

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge