Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Boutet is active.

Publication


Featured researches published by Sébastien Boutet.


Nature | 2011

Femtosecond x-ray protein nanocrystallography

Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan

X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.


Nature Physics | 2006

Femtosecond diffractive imaging with a soft-X-ray free-electron laser

Henry N. Chapman; Anton Barty; Michael J. Bogan; Sébastien Boutet; Matthias Frank; Stefan P. Hau-Riege; Stefano Marchesini; Bruce W. Woods; Sasa Bajt; W. Henry Benner; Richard A. London; Elke Plönjes; Marion Kuhlmann; Rolf Treusch; S. Düsterer; T. Tschentscher; Jochen R. Schneider; Eberhard Spiller; T. Möller; Christoph F. O. Bostedt; M. Hoener; David A. Shapiro; Keith O. Hodgson; David van der Spoel; Florian Burmeister; Magnus Bergh; Carl Caleman; Gösta Huldt; M. Marvin Seibert; Filipe R. N. C. Maia

Theory predicts1,2,3,4 that, with an ultrashort and extremely bright coherent X-ray pulse, a single diffraction pattern may be recorded from a large macromolecule, a virus or a cell before the sample explodes and turns into a plasma. Here we report the first experimental demonstration of this principle using the FLASH soft-X-ray free-electron laser. An intense 25 fs, 4×1013 W cm−2 pulse, containing 1012 photons at 32 nm wavelength, produced a coherent diffraction pattern from a nanostructured non-periodic object, before destroying it at 60,000 K. A novel X-ray camera assured single-photon detection sensitivity by filtering out parasitic scattering and plasma radiation. The reconstructed image, obtained directly from the coherent pattern by phase retrieval through oversampling5,6,7,8,9, shows no measurable damage, and is reconstructed at the diffraction-limited resolution. A three-dimensional data set may be assembled from such images when copies of a reproducible sample are exposed to the beam one by one10.


Nature | 2011

Single mimivirus particles intercepted and imaged with an X-ray laser

M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt

X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.


Science | 2012

High-resolution protein structure determination by serial femtosecond crystallography

Sébastien Boutet; Lukas Lomb; Garth J. Williams; Thomas R. M. Barends; Andrew Aquila; R. Bruce Doak; Uwe Weierstall; Daniel P. DePonte; Jan Steinbrener; Robert L. Shoeman; Marc Messerschmidt; Anton Barty; Thomas A. White; Stephan Kassemeyer; Richard A. Kirian; M. Marvin Seibert; Paul A. Montanez; Chris Kenney; R. Herbst; P. Hart; J. Pines; G. Haller; Sol M. Gruner; Hugh T. Philipp; Mark W. Tate; Marianne Hromalik; Lucas J. Koerner; Niels van Bakel; John Morse; Wilfred Ghonsalves

Size Matters Less X-ray crystallography is a central research tool for uncovering the structures of proteins and other macromolecules. However, its applicability typically requires growth of large crystals, in part because a sufficient number of molecules must be present in the lattice for the sample to withstand x-ray—induced damage. Boutet et al. (p. 362, published online 31 May) now demonstrate that the intense x-ray pulses emitted by a free-electron laser source can yield data in few enough exposures to uncover the high-resolution structure of microcrystals. A powerful x-ray laser source can probe proteins in detail using much smaller crystals than previously required. Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.


Nature | 2015

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Science | 2013

Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser

Karol Nass; Daniel P. DePonte; Thomas A. White; Dirk Rehders; Anton Barty; Francesco Stellato; Mengning Liang; Thomas R. M. Barends; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt; M. Marvin Seibert; Andrew Aquila; David Arnlund; Sasa Bajt; Torsten Barth; Michael J. Bogan; Carl Caleman; Tzu Chiao Chao; R. Bruce Doak; Holger Fleckenstein; Matthias Frank; Raimund Fromme; Lorenzo Galli; Ingo Grotjohann; Mark S. Hunter; Linda C. Johansson; Stephan Kassemeyer; Gergely Katona; Richard A. Kirian

Diffraction Before Destruction A bottleneck in x-ray crystallography is the growth of well-ordered crystals large enough to obtain high-resolution diffraction data within an exposure that limits radiation damage. Serial femtosecond crystallography promises to overcome these constraints by using short intense pulses that out-run radiation damage. A stream of crystals is flowed across the free-electron beam and for each pulse, diffraction data is recorded from a single crystal before it is destroyed. Redecke et al. (p. 227, published online 29 November; see the Perspective by Helliwell) used this technique to determine the structure of an enzyme from Trypanosoma brucei, the parasite that causes sleeping sickness, from micron-sized crystals grown within insect cells. The structure shows how this enzyme, which is involved in degradation of host proteins, is natively inhibited prior to activation, which could help in the development of parasite-specific inhibitors. In vivo crystallization and serial femtosecond crystallography reveal the structure of a sleeping sickness parasite protease. [Also see Perspective by Helliwell] The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals.


Nature Communications | 2014

Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography

Uwe Weierstall; Daniel James; Chong Wang; Thomas A. White; Dingjie Wang; Wei Liu; John C. Spence; R. Bruce Doak; Garrett Nelson; Petra Fromme; Raimund Fromme; Ingo Grotjohann; Christopher Kupitz; Nadia A. Zatsepin; Haiguang Liu; Shibom Basu; Daniel Wacker; Gye Won Han; Vsevolod Katritch; Sébastien Boutet; Marc Messerschmidt; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Markus Klinker; Cornelius Gati; Robert L. Shoeman; Anton Barty; Henry N. Chapman; Richard A. Kirian

Lipidic cubic phase (LCP) crystallization has proven successful for high-resolution structure determination of challenging membrane proteins. Here we present a technique for extruding gel-like LCP with embedded membrane protein microcrystals, providing a continuously renewed source of material for serial femtosecond crystallography. Data collected from sub-10-μm-sized crystals produced with less than 0.5 mg of purified protein yield structural insights regarding cyclopamine binding to the Smoothened receptor.


Science | 2013

Serial femtosecond crystallography of G protein-coupled receptors.

Wei Liu; Daniel Wacker; Cornelius Gati; Gye Won Han; Daniel James; Dingjie Wang; Garrett Nelson; Uwe Weierstall; Vsevolod Katritch; Anton Barty; Nadia A. Zatsepin; Dianfan Li; Marc Messerschmidt; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; M. Marvin Seibert; Chong Wang; Syed T. A. Shah; Shibom Basu; Raimund Fromme; Christopher Kupitz; Kimberley Rendek; Ingo Grotjohann; Petra Fromme; Richard A. Kirian; Kenneth R. Beyerlein; Thomas A. White; Henry N. Chapman; Martin Caffrey

G Structures G protein–coupled receptors (GPCRs) are eukaryotic membrane proteins that have a central role in cellular communication and have become key drug targets. To overcome the difficulties of growing GPCRs crystals, Liu et al. (p. 1521) used an x-ray free-electron laser to determine a high-resolution structure of the serotonin receptor from microcrystals. The structure of a human serotonin receptor was solved using a free-electron laser to analyze microcrystals. X-ray crystallography of G protein–coupled receptors and other membrane proteins is hampered by difficulties associated with growing sufficiently large crystals that withstand radiation damage and yield high-resolution data at synchrotron sources. We used an x-ray free-electron laser (XFEL) with individual 50-femtosecond-duration x-ray pulses to minimize radiation damage and obtained a high-resolution room-temperature structure of a human serotonin receptor using sub-10-micrometer microcrystals grown in a membrane mimetic matrix known as lipidic cubic phase. Compared with the structure solved by using traditional microcrystallography from cryo-cooled crystals of about two orders of magnitude larger volume, the room-temperature XFEL structure displays a distinct distribution of thermal motions and conformations of residues that likely more accurately represent the receptor structure and dynamics in a cellular environment.


Science | 2013

Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature.

Jan Kern; Roberto Alonso-Mori; Rosalie Tran; Johan Hattne; Richard J. Gildea; Nathaniel Echols; Carina Glöckner; Julia Hellmich; Hartawan Laksmono; Raymond G. Sierra; Benedikt Lassalle-Kaiser; Sergey Koroidov; Alyssa Lampe; Guangye Han; Sheraz Gul; Dörte DiFiore; Despina Milathianaki; Alan Fry; A. Miahnahri; Donald W. Schafer; Marc Messerschmidt; M. Marvin Seibert; Jason E. Koglin; Dimosthenis Sokaras; Tsu-Chien Weng; Jonas A. Sellberg; Matthew J. Latimer; Ralf W. Grosse-Kunstleve; Petrus H. Zwart; William E. White

One Protein, Two Probes A central challenge in the use of x-ray diffraction to characterize macromolecular structure is the propensity of the high-energy radiation to damage the sample during data collection. Recently, a powerful accelerator-based, ultrafast x-ray laser source has been used to determine the geometric structures of small protein crystals too fragile for conventional diffraction techniques. Kern et al. (p. 491, published online 14 February) now pair this method with concurrent x-ray emission spectroscopy to probe electronic structure, as well as geometry, and were able to characterize the metal oxidation states in the oxygen-evolving complex within photosystem II crystals, while simultaneously verifying the surrounding protein structure. A powerful x-ray laser source can extract the geometry and electronic structure of metalloenzymes prior to damaging them. Intense femtosecond x-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous x-ray diffraction (XRD) and x-ray emission spectroscopy (XES) of microcrystals of photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD-XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation-sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies.


Science | 2014

Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein

Jason Tenboer; Shibom Basu; Nadia A. Zatsepin; Kanupriya Pande; Despina Milathianaki; Matthias Frank; Mark S. Hunter; Sébastien Boutet; Garth J. Williams; Jason E. Koglin; Dominik Oberthuer; Michael Heymann; Christopher Kupitz; Chelsie E. Conrad; Jesse Coe; Shatabdi Roy-Chowdhury; Uwe Weierstall; Daniel James; Dingjie Wang; Thomas D. Grant; Anton Barty; Oleksandr Yefanov; Jennifer Scales; Cornelius Gati; Carolin Seuring; Vukica Šrajer; Robert Henning; Peter Schwander; Raimund Fromme; A. Ourmazd

Serial femtosecond crystallography using ultrashort pulses from x-ray free electron lasers (XFELs) enables studies of the light-triggered dynamics of biomolecules. We used microcrystals of photoactive yellow protein (a bacterial blue light photoreceptor) as a model system and obtained high-resolution, time-resolved difference electron density maps of excellent quality with strong features; these allowed the determination of structures of reaction intermediates to a resolution of 1.6 angstroms. Our results open the way to the study of reversible and nonreversible biological reactions on time scales as short as femtoseconds under conditions that maximize the extent of reaction initiation throughout the crystal. Structural changes during a macromolecular reaction are captured at near-atomic resolution by an x-ray free electron laser. Watching a protein molecule in motion X-ray crystallography has yielded beautiful high-resolution images that give insight into how proteins function. However, these represent static snapshots of what are often dynamic processes. For photosensitive molecules, time-resolved crystallography at a traditional synchrotron source provides a method to follow structural changes with a time resolution of about 100 ps. X-ray free electron lasers (XFELs) open the possibility of performing time-resolved experiments on time scales as short as femtoseconds. Tenboer et al. used XFELs to study the light-triggered dynamics of photoactive yellow protein. Electron density maps of high quality were obtained 10 ns and 1 µs after initiating the reaction. At 1 µs, two intermediates revealed previously unidentified structural changes. Science, this issue p. 1242

Collaboration


Dive into the Sébastien Boutet's collaboration.

Top Co-Authors

Avatar

Garth J. Williams

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anton Barty

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Marc Messerschmidt

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason E. Koglin

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Aquila

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthias Frank

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Mengning Liang

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge