Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hartmut Luecke is active.

Publication


Featured researches published by Hartmut Luecke.


Nature | 2003

Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α

Jin Fu; Silvana Gaetani; Jesse Lo Verme; Antonia Serrano; Fernando Rodríguez de Fonseca; Anja Rosengarth; Hartmut Luecke; Barbara Di Giacomo; Giorgio Tarzia; Daniele Piomelli

Oleylethanolamide (OEA) is a naturally occurring lipid that regulates satiety and body weight. Although structurally related to the endogenous cannabinoid anandamide, OEA does not bind to cannabinoid receptors and its molecular targets have not been defined. Here we show that OEA binds with high affinity to the peroxisome-proliferator-activated receptor-α (PPAR-α), a nuclear receptor that regulates several aspects of lipid metabolism. Administration of OEA produces satiety and reduces body weight gain in wild-type mice, but not in mice deficient in PPAR-α. Two distinct PPAR-α agonists have similar effects that are also contingent on PPAR-α expression, whereas potent and selective agonists for PPAR-γ and PPAR-β/δ are ineffective. In the small intestine of wild-type but not PPAR-α-null mice, OEA regulates the expression of several PPAR-α target genes: it initiates the transcription of proteins involved in lipid metabolism and represses inducible nitric oxide synthase, an enzyme that may contribute to feeding stimulation. Our results, which show that OEA induces satiety by activating PPAR-α, identify an unexpected role for this nuclear receptor in regulating behaviour, and raise possibilities for the treatment of eating disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.

Hartmut Luecke; Brigitte Schobert; Jason Stagno; Eleonora S. Imasheva; Jennifer M. Wang; Sergei P. Balashov; Janos K. Lanyi

Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein–carotenoid complex by X-ray diffraction, to 1.9-Å resolution. Although it contains 7 transmembrane helices like bacteriorhodopsin and archaerhodopsin, the structure of xanthorhodopsin is considerably different from the 2 archaeal proteins. The crystallographic model for this rhodopsin introduces structural motifs for proton transfer during the reaction cycle, particularly for proton release, that are dramatically different from those in other retinal-based transmembrane pumps. Further, it contains a histidine–aspartate complex for regulating the pKa of the primary proton acceptor not present in archaeal pumps but apparently conserved in eubacterial pumps. In addition to aiding elucidation of a more general proton transfer mechanism for light-driven energy transducers, the structure defines also the geometry of the carotenoid and the retinal. The close approach of the 2 polyenes at their ring ends explains why the efficiency of the excited-state energy transfer is as high as ≈45%, and the 46° angle between them suggests that the chromophore location is a compromise between optimal capture of light of all polarization angles and excited-state energy transfer.


Biochimica et Biophysica Acta | 2000

Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump.

Hartmut Luecke

High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.


Journal of Molecular Biology | 2003

A calcium-driven conformational switch of the N-terminal and core domains of annexin A1.

Anja Rosengarth; Hartmut Luecke

In 1993, Huber and co-workers published the structure of an N-terminally truncated version of human annexin A1 lacking the first 32 amino acid residues (PDB code: 1AIN). In 2001, we reported the structure of full-length porcine annexin A1 including the N-terminal domain in the absence of calcium ions (PDB code: 1HM6). The latter structure did not reflect a typical annexin core fold, but rather a surprising interaction of the N-terminal domain and the core domain. Comparing these two structures revealed that in the full-length structure the first 12 residues of the N-terminal domain insert into the core of the protein, thereby replacing and unwinding one of the alpha-helices (helix D in repeat 3) that is involved in calcium binding. We hypothesized that this structure in the absence of calcium ions represents the inactive form of the protein. Furthermore, we proposed that upon calcium binding, the N-terminal domain would be expelled from the core domain and that the core D-helix would reform in the proper conformation for calcium coordination. Herein, we report the X-ray structure of full-length porcine annexin A1 in the presence of calcium. This new structure shows a typical annexin core structure as we hypothesized, with the D-helix back in place for calcium coordination while parts of the now exposed N-terminal domain are disordered. We could locate eight calcium ions in this structure, two of which are octa-coordinated and two of which were not observed in the structure of the N-terminally truncated annexin A1. Possible implications of this calcium-induced conformational switch for the membrane aggregation properties of annexin A1 will be discussed.


Nature Communications | 2013

Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53

Christopher D. Wassman; Roberta Baronio; Özlem Demir; Brad D. Wallentine; Chiung-Kuang Chen; Linda V. Hall; Faezeh Salehi; Da-Wei Lin; Benjamin P. Chung; G. Wesley Hatfield; A. Richard Chamberlin; Hartmut Luecke; Richard H. Lathrop; Peter K. Kaiser; Rommie E. Amaro

The tumour suppressor p53 is the most frequently mutated gene in human cancer. Reactivation of mutant p53 by small molecules is an exciting potential cancer therapy. Although several compounds restore wild-type function to mutant p53, their binding sites and mechanisms of action are elusive. Here computational methods identify a transiently open binding pocket between loop L1 and sheet S3 of the p53 core domain. Mutation of residue Cys124, located at the centre of the pocket, abolishes p53 reactivation of mutant R175H by PRIMA-1, a known reactivation compound. Ensemble-based virtual screening against this newly revealed pocket selects stictic acid as a potential p53 reactivation compound. In human osteosarcoma cells, stictic acid exhibits dose-dependent reactivation of p21 expression for mutant R175H more strongly than does PRIMA-1. These results indicate the L1/S3 pocket as a target for pharmaceutical reactivation of p53 mutants.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein

Abigail I. Nash; Reginald McNulty; Mary Elizabeth Shillito; Trevor E. Swartz; Roberto A. Bogomolni; Hartmut Luecke; Kevin H. Gardner

Light-oxygen-voltage (LOV) domains are blue light-activated signaling modules integral to a wide range of photosensory proteins. Upon illumination, LOV domains form internal protein-flavin adducts that generate conformational changes which control effector function. Here we advance our understanding of LOV regulation with structural, biophysical, and biochemical studies of EL222, a light-regulated DNA-binding protein. The dark-state crystal structure reveals interactions between the EL222 LOV and helix-turn-helix domains that we show inhibit DNA binding. Solution biophysical data indicate that illumination breaks these interactions, freeing the LOV and helix-turn-helix domains of each other. This conformational change has a key functional effect, allowing EL222 to bind DNA in a light-dependent manner. Our data reveal a conserved signaling mechanism among diverse LOV-containing proteins, where light-induced conformational changes trigger activation via a conserved interaction surface.


Current Opinion in Structural Biology | 2002

Sensory rhodopsin II: functional insights from structure.

John L. Spudich; Hartmut Luecke

Atomic resolution structures of a sensory rhodopsin phototaxis receptor in haloarchaea (the first sensory member of the widespread microbial rhodopsin family) have yielded insights into the interaction face with its membrane-embedded transducer and into the mechanism of spectral tuning. Spectral differences between sensory rhodopsin and the light-driven proton pump bacteriorhodopsin depend largely upon the repositioning of a conserved arginine residue in the chromophore-binding pocket. Information derived from the structures, combined with biophysical and biochemical analysis, has established a model for receptor activation and signal relay, in which light-induced helix tilting in the receptor is transmitted to the transducer by lateral transmembrane helix-helix interactions.


Nature Structural & Molecular Biology | 1997

A low energy short hydrogen bond in very high resolution structures of protein receptor--phosphate complexes.

Zhongmin Wang; Hartmut Luecke; Nanhua Yao; Florante A. Quiocho

A very short hydrogen bond between an Asp and a phosphate is established in two high resolution structures (0.98 and 1.05 Å). A mutant complex that changes the Asp to an Asn, which forms a normal hydrogen bond, has a similar free energy of binding to the wild type complex, suggesting that the contribution of the short hydrogen bond is not extraordinarily strong.


Acta Crystallographica Section D-biological Crystallography | 2007

Structure of the human p53 core domain in the absence of DNA.

Ying Wang; Anja Rosengarth; Hartmut Luecke

The tumor suppressor protein p53 plays a key role in cell-cycle regulation by triggering DNA repair, cell-cycle arrest and apoptosis when the appropriate signal is received. p53 has the classic architecture of a transcription factor, with an amino-terminal transactivation domain, a core DNA-binding domain and carboxy-terminal tetramerization and regulatory domains. The crystal structure of the p53 core domain, which includes the amino acids from residue 96 to residue 289, has been determined in the absence of DNA to a resolution of 2.05 A. Crystals grew in a new monoclinic space group (P2(1)), with unit-cell parameters a = 68.91, b = 69.36, c = 84.18 A, beta = 90.11 degrees . The structure was solved by molecular replacement and has been refined to a final R factor of 20.9% (R(free) = 24.6%). The final model contains four molecules in the asymmetric unit with four zinc ions and 389 water molecules. The non-crystallographic tetramers display different protein contacts from those in other p53 crystals, giving rise to the question of how p53 arranges as a tetramer when it binds its target DNA.


Nature | 2012

Structure of the proton-gated urea channel from the gastric pathogen Helicobacter pylori.

David Strugatsky; Reginald McNulty; Keith Munson; Chiung-Kuang Chen; S. Michael Soltis; George Sachs; Hartmut Luecke

Half the world’s population is chronically infected with Helicobacter pylori, causing gastritis, gastric ulcers and an increased incidence of gastric adenocarcinoma. Its proton-gated inner-membrane urea channel, HpUreI, is essential for survival in the acidic environment of the stomach. The channel is closed at neutral pH and opens at acidic pH to allow the rapid access of urea to cytoplasmic urease. Urease produces NH3 and CO2, neutralizing entering protons and thus buffering the periplasm to a pH of roughly 6.1 even in gastric juice at a pH below 2.0. Here we report the structure of HpUreI, revealing six protomers assembled in a hexameric ring surrounding a central bilayer plug of ordered lipids. Each protomer encloses a channel formed by a twisted bundle of six transmembrane helices. The bundle defines a previously unobserved fold comprising a two-helix hairpin motif repeated three times around the central axis of the channel, without the inverted repeat of mammalian-type urea transporters. Both the channel and the protomer interface contain residues conserved in the AmiS/UreI superfamily, suggesting the preservation of channel architecture and oligomeric state in this superfamily. Predominantly aromatic or aliphatic side chains line the entire channel and define two consecutive constriction sites in the middle of the channel. Mutation of Trp 153 in the cytoplasmic constriction site to Ala or Phe decreases the selectivity for urea in comparison with thiourea, suggesting that solute interaction with Trp 153 contributes specificity. The previously unobserved hexameric channel structure described here provides a new model for the permeation of urea and other small amide solutes in prokaryotes and archaea.

Collaboration


Dive into the Hartmut Luecke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janos K. Lanyi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Spudich

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason Stagno

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge