Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hartmut Neven is active.

Publication


Featured researches published by Hartmut Neven.


computer vision and pattern recognition | 2009

Tour the world: Building a web-scale landmark recognition engine

Yan-Tao Zheng; Ming Zhao; Yang Song; Hartwig Adam; Ulrich Buddemeier; Alessandro Bissacco; Fernando Brucher; Tat-Seng Chua; Hartmut Neven

Modeling and recognizing landmarks at world-scale is a useful yet challenging task. There exists no readily available list of worldwide landmarks. Obtaining reliable visual models for each landmark can also pose problems, and efficiency is another challenge for such a large scale system. This paper leverages the vast amount of multimedia data on the Web, the availability of an Internet image search engine, and advances in object recognition and clustering techniques, to address these issues. First, a comprehensive list of landmarks is mined from two sources: (1) ~20 million GPS-tagged photos and (2) online tour guide Web pages. Candidate images for each landmark are then obtained from photo sharing Websites or by querying an image search engine. Second, landmark visual models are built by pruning candidate images using efficient image matching and unsupervised clustering techniques. Finally, the landmarks and their visual models are validated by checking authorship of their member images. The resulting landmark recognition engine incorporates 5312 landmarks from 1259 cities in 144 countries. The experiments demonstrate that the engine can deliver satisfactory recognition performance with high efficiency.


international conference on computer vision | 2013

PhotoOCR: Reading Text in Uncontrolled Conditions

Alessandro Bissacco; Mark Joseph Cummins; Yuval Netzer; Hartmut Neven

We describe Photo OCR, a system for text extraction from images. Our particular focus is reliable text extraction from smartphone imagery, with the goal of text recognition as a user input modality similar to speech recognition. Commercially available OCR performs poorly on this task. Recent progress in machine learning has substantially improved isolated character classification, we build on this progress by demonstrating a complete OCR system using these techniques. We also incorporate modern data center-scale distributed language modelling. Our approach is capable of recognizing text in a variety of challenging imaging conditions where traditional OCR systems fail, notably in the presence of substantial blur, low resolution, low contrast, high image noise and other distortions. It also operates with low latency, mean processing time is 600 ms per image. We evaluate our system on public benchmark datasets for text extraction and outperform all previously reported results, more than halving the error rate on multiple benchmarks. The system is currently in use in many applications at Google, and is available as a user input modality in Google Translate for Android.


european conference on computer vision | 2014

Large-Scale Object Classification Using Label Relation Graphs

Jia Deng; Nan Ding; Yangqing Jia; Andrea Frome; Kevin P. Murphy; Samy Bengio; Yuan Li; Hartmut Neven; Hartwig Adam

In this paper we study how to perform object classification in a principled way that exploits the rich structure of real world labels. We develop a new model that allows encoding of flexible relations between labels. We introduce Hierarchy and Exclusion (HEX) graphs, a new formalism that captures semantic relations between any two labels applied to the same object: mutual exclusion, overlap and subsumption. We then provide rigorous theoretical analysis that illustrates properties of HEX graphs such as consistency, equivalence, and computational implications of the graph structure. Next, we propose a probabilistic classification model based on HEX graphs and show that it enjoys a number of desirable properties. Finally, we evaluate our method using a large-scale benchmark. Empirical results demonstrate that our model can significantly improve object classification by exploiting the label relations.


international conference on computer vision | 2009

Large-scale privacy protection in Google Street View

Andrea Frome; German Cheung; Ahmad Abdulkader; Marco Zennaro; Bo Wu; Alessandro Bissacco; Hartwig Adam; Hartmut Neven; Luc Vincent

The last two years have witnessed the introduction and rapid expansion of products based upon large, systematically-gathered, street-level image collections, such as Google Street View, EveryScape, and Mapjack. In the process of gathering images of public spaces, these projects also capture license plates, faces, and other information considered sensitive from a privacy standpoint. In this work, we present a system that addresses the challenge of automatically detecting and blurring faces and license plates for the purpose of privacy protection in Google Street View. Though some in the field would claim face detection is “solved”, we show that state-of-the-art face detectors alone are not sufficient to achieve the recall desired for large-scale privacy protection. In this paper we present a system that combines a standard sliding-window detector tuned for a high recall, low-precision operating point with a fast post-processing stage that is able to remove additional false positives by incorporating domain-specific information not available to the sliding-window detector. Using a completely automatic system, we are able to sufficiently blur more than 89% of faces and 94 – 96% of license plates in evaluation sets sampled from Google Street View imagery.


acm multimedia | 2009

Tour the world: a technical demonstration of a web-scale landmark recognition engine

Yan-Tao Zheng; Ming Zhao; Yang Song; Hartwig Adam; Ulrich Buddemeier; Alessandro Bissacco; Fernando Brucher; Tat-Seng Chua; Hartmut Neven; Jay Yagnik

We present a technical demonstration of a world-scale touristic landmark recognition engine. To build such an engine, we leverage ~21.4 million images, from photo sharing websites and Google Image Search, and around two thousand web articles to mine the landmark names and learn the visual models. The landmark recognition engine incorporates 5312 landmarks from 1259 cities in 144 countries. This demonstration gives three exhibits: (1) a live landmark recognition engine that can visually recognize landmarks in a given image; (2) an interactive navigation tool showing landmarks on Google Earth; and (3) sample visual clusters (landmark model images) and a list of 1000 randomly selected landmarks from our recognition engine with their iconic images.


Nature | 2016

Digitized adiabatic quantum computing with a superconducting circuit

R. Barends; Alireza Shabani; Lucas Lamata; J. Kelly; A. Mezzacapo; U. Las Heras; Ryan Babbush; Austin G. Fowler; B. Campbell; Yu Chen; Z. Chen; B. Chiaro; A. Dunsworth; E. Jeffrey; Erik Lucero; A. Megrant; J. Mutus; M. Neeley; C. Neill; P. J. J. O’Malley; C. Quintana; P. Roushan; D. Sank; A. Vainsencher; J. Wenner; T. White; E. Solano; Hartmut Neven; John M. Martinis

Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.


Nature Physics | 2018

Characterizing quantum supremacy in near-term devices

Sergio Boixo; Sergei V. Isakov; Vadim N. Smelyanskiy; Ryan Babbush; Nan Ding; Zhang Jiang; Michael J. Bremner; John M. Martinis; Hartmut Neven

A critical question for quantum computing in the near future is whether quantum devices without error correction can perform a well-defined computational task beyond the capabilities of supercomputers. Such a demonstration of what is referred to as quantum supremacy requires a reliable evaluation of the resources required to solve tasks with classical approaches. Here, we propose the task of sampling from the output distribution of random quantum circuits as a demonstration of quantum supremacy. We extend previous results in computational complexity to argue that this sampling task must take exponential time in a classical computer. We introduce cross-entropy benchmarking to obtain the experimental fidelity of complex multiqubit dynamics. This can be estimated and extrapolated to give a success metric for a quantum supremacy demonstration. We study the computational cost of relevant classical algorithms and conclude that quantum supremacy can be achieved with circuits in a two-dimensional lattice of 7 × 7 qubits and around 40 clock cycles. This requires an error rate of around 0.5% for two-qubit gates (0.05% for one-qubit gates), and it would demonstrate the basic building blocks for a fault-tolerant quantum computer.As a benchmark for the development of a future quantum computer, sampling from random quantum circuits is suggested as a task that will lead to quantum supremacy—a calculation that cannot be carried out classically.


Physical Review X | 2016

Scalable Quantum Simulation of Molecular Energies

P. O'Malley; Ryan Babbush; Ian D. Kivlichan; Jonathan Romero; Jarrod McClean; R. Barends; J. Kelly; P. Roushan; Andrew Tranter; Nan Ding; B. Campbell; Yu Chen; Z. Chen; Ben Chiaro; A. Dunsworth; Austin G. Fowler; E. Jeffrey; A. Megrant; Josh Mutus; Charles Neil; Chris Quintana; D. Sank; T. White; J. Wenner; A. Vainsencher; Peter V. Coveney; Peter Love; Hartmut Neven; Alán Aspuru-Guzik; John M. Martinis

We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.


Physical Review X | 2016

What is the Computational Value of Finite Range Tunneling

Vasil S. Denchev; Sergio Boixo; Sergei V. Isakov; Nan Ding; Ryan Babbush; Vadim N. Smelyanskiy; John M. Martinis; Hartmut Neven

Quantum annealing (QA) has been proposed as a quantum enhanced optimization heuristic exploiting tunneling. Here, we demonstrate how finite range tunneling can provide considerable computational advantage. For a crafted problem designed to have tall and narrow energy barriers separating local minima, the D-Wave 2X quantum annealer achieves significant runtime advantages relative to Simulated Annealing (SA). For instances with 945 variables, this results in a time-to-99%-success-probability that is


Nature Communications | 2016

Computational multiqubit tunnelling in programmable quantum annealers

Sergio Boixo; Vadim N. Smelyanskiy; Alireza Shabani; Sergei V. Isakov; Mark Dykman; Vasil S. Denchev; Mohammad H. Amin; Anatoly Yu. Smirnov; Masoud Mohseni; Hartmut Neven

\sim 10^8

Collaboration


Dive into the Hartmut Neven's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johannes Steffens

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge