Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haruko Miyazaki is active.

Publication


Featured researches published by Haruko Miyazaki.


Journal of Biological Chemistry | 2005

beta Subunits of voltage-gated sodium channels are novel substrates of beta-site amyloid precursor protein-cleaving enzyme (BACE1) and gamma-secretase

Hon-Kit Wong; Takashi Sakurai; Fumitaka Oyama; Kumi Kaneko; Koji Wada; Haruko Miyazaki; Masaru Kurosawa; Bart De Strooper; Paul Saftig; Nobuyuki Nukina

Sequential processing of amyloid precursor protein (APP) by membrane-bound proteases, BACE1 and γ-secretase, plays a crucial role in the pathogenesis of Alzheimer disease. Much has been discovered on the properties of these proteases; however, regulatory mechanisms of enzyme-substrate interaction in neurons and their involvement in pathological changes are still not fully understood. It is mainly because of the membrane-associated cleavage of these proteases and the lack of information on new substrates processed in a similar way to APP. Here, using RNA interference-mediated BACE1 knockdown, mouse embryonic fibroblasts that are deficient in either BACE1 or presenilins, and BACE1-deficient mouse brain, we show clear evidence that β subunits of voltage-gated sodium channels are sequentially processed by BACE1 and γ-secretase. These results may provide new insights into the underlying pathology of Alzheimer disease.


The Journal of Neuroscience | 2009

A Functional Null Mutation of SCN1B in a Patient with Dravet Syndrome

Gustavo A. Patino; Lieve Claes; Luis F. Lopez-Santiago; Emily A. Slat; Raja S. R. Dondeti; Chunling Chen; Heather A. O'Malley; Charles B. B. Gray; Haruko Miyazaki; Nobuyuki Nukina; Fumitaka Oyama; Lori L. Isom

Dravet syndrome (also called severe myoclonic epilepsy of infancy) is one of the most severe forms of childhood epilepsy. Most patients have heterozygous mutations in SCN1A, encoding voltage-gated sodium channel Nav1.1 α subunits. Sodium channels are modulated by β1 subunits, encoded by SCN1B, a gene also linked to epilepsy. Here we report the first patient with Dravet syndrome associated with a recessive mutation in SCN1B (p.R125C). Biochemical characterization of p.R125C in a heterologous system demonstrated little to no cell surface expression despite normal total cellular expression. This occurred regardless of coexpression of Nav1.1 α subunits. Because the patient was homozygous for the mutation, these data suggest a functional SCN1B null phenotype. To understand the consequences of the lack of β1 cell surface expression in vivo, hippocampal slice recordings were performed in Scn1b−/− versus Scn1b+/+ mice. Scn1b−/− CA3 neurons fired evoked action potentials with a significantly higher peak voltage and significantly greater amplitude compared with wild type. However, in contrast to the Scn1a+/− model of Dravet syndrome, we found no measurable differences in sodium current density in acutely dissociated CA3 hippocampal neurons. Whereas Scn1b−/− mice seize spontaneously, the seizure susceptibility of Scn1b+/− mice was similar to wild type, suggesting that, like the parents of this patient, one functional SCN1B allele is sufficient for normal control of electrical excitability. We conclude that SCN1B p.R125C is an autosomal recessive cause of Dravet syndrome through functional gene inactivation.


Nature Biotechnology | 2010

Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein

Peter O. Bauer; Anand Goswami; Hon Kit Wong; Misako Okuno; Masaru Kurosawa; Mizuki Yamada; Haruko Miyazaki; Gen Matsumoto; Yoshihiro Kino; Yoshitaka Nagai; Nobuyuki Nukina

Huntingtons Disease (HD) is a dominantly inherited pathology caused by the accumulation of mutant huntingtin protein (HTT) containing an expanded polyglutamine (polyQ) tract. As the polyglutamine binding peptide 1 (QBP1) is known to bind an expanded polyQ tract but not the polyQ motif found in normal HTT, we selectively targeted mutant HTT for degradation by expressing a fusion molecule comprising two copies of QBP1 and copies of two different heat shock cognate protein 70 (HSC70)–binding motifs in cellular and mouse models of HD. Chaperone-mediated autophagy contributed to the specific degradation of mutant HTT in cultured cells expressing the construct. Intrastriatal delivery of a virus expressing the fusion molecule ameliorated the disease phenotype in the R6/2 mouse model of HD. Similar adaptor molecules comprising HSC70–binding motifs fused to an appropriate structure-specific binding agent(s) may have therapeutic potential for treating diseases caused by misfolded proteins other than those with expanded polyQ tracts.


Neuron | 2008

BIG-2 Mediates Olfactory Axon Convergence to Target Glomeruli

Tomomi Kaneko-Goto; Sei-ichi Yoshihara; Haruko Miyazaki; Yoshihiro Yoshihara

Olfactory sensory neurons expressing a given odorant receptor converge axons onto a few topographically fixed glomeruli in the olfactory bulb, leading to establishment of the odor map. Here, we report that BIG-2/contactin-4, an axonal glycoprotein belonging to the immunoglobulin superfamily, is expressed in a subpopulation of mouse olfactory sensory neurons. A mosaic pattern of glomerular arrangement is observed with strongly BIG-2-positive, weakly positive, and negative axon terminals in the olfactory bulb, which is overlapping but not identical with those of Kirrel2 and ephrin-A5. There is a close correlation between the BIG-2 expression level and the odorant receptor choice in individual sensory neurons. In BIG-2-deficient mice, olfactory sensory neurons expressing a given odorant receptor frequently innervate multiple glomeruli at ectopic locations. These results suggest that BIG-2 is one of the axon guidance molecules crucial for the formation and maintenance of functional odor map in the olfactory bulb.


Journal of Biological Chemistry | 2008

RNA-binding Protein TLS Is a Major Nuclear Aggregate-interacting Protein in Huntingtin Exon 1 with Expanded Polyglutamine-expressing Cells

Hiroshi Doi; Kazumasa Okamura; Peter Bauer; Yoshiaki Furukawa; Hideaki Shimizu; Masaru Kurosawa; Yoko Machida; Haruko Miyazaki; Kenichi Mitsui; Yoshiyuki Kuroiwa; Nobuyuki Nukina

Formation of intracellular aggregates is the hallmark of polyglutamine (polyQ) diseases. We analyzed the components of purified nuclear polyQ aggregates by mass spectrometry. As a result, we found that the RNA-binding protein translocated in liposarcoma (TLS) was one of the major components of nuclear polyQ aggregate-interacting proteins in a Huntington disease cell model and was also associated with neuronal intranuclear inclusions of R6/2 mice. In vitro study revealed that TLS could directly bind to truncated N-terminal huntingtin (tNhtt) aggregates but could not bind to monomer GST-tNhtt with 18, 42, or 62Q, indicating that the tNhtt protein acquired the ability to sequester TLS after forming aggregates. Thioflavin T assay and electron microscopic study further supported the idea that TLS bound to tNhtt-42Q aggregates at the early stage of tNhtt-42Q amyloid formation. Immunohistochemistry showed that TLS was associated with neuronal intranuclear inclusions of Huntington disease human brain. Because TLS has a variety of functional roles, the sequestration of TLS to polyQ aggregates may play a role in diverse pathological changes in the brains of patients with polyQ diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Functional reciprocity between Na+ channel Nav1.6 and β1 subunits in the coordinated regulation of excitability and neurite outgrowth

William J. Brackenbury; Jeffrey D. Calhoun; Chunling Chen; Haruko Miyazaki; Nobuyuki Nukina; Fumitaka Oyama; Barbara Ranscht; Lori L. Isom

Voltage-gated Na+ channel (VGSC) β1 subunits regulate cell–cell adhesion and channel activity in vitro. We previously showed that β1 promotes neurite outgrowth in cerebellar granule neurons (CGNs) via homophilic cell adhesion, fyn kinase, and contactin. Here we demonstrate that β1-mediated neurite outgrowth requires Na+ current (INa) mediated by Nav1.6. In addition, β1 is required for high-frequency action potential firing. Transient INa is unchanged in Scn1b (β1) null CGNs; however, the resurgent INa, thought to underlie high-frequency firing in Nav1.6-expressing cerebellar neurons, is reduced. The proportion of axon initial segments (AIS) expressing Nav1.6 is reduced in Scn1b null cerebellar neurons. In place of Nav1.6 at the AIS, we observed an increase in Nav1.1, whereas Nav1.2 was unchanged. This indicates that β1 is required for normal localization of Nav1.6 at the AIS during the postnatal developmental switch to Nav1.6-mediated high-frequency firing. In agreement with this, β1 is normally expressed with α subunits at the AIS of P14 CGNs. We propose reciprocity of function between β1 and Nav1.6 such that β1-mediated neurite outgrowth requires Nav1.6-mediated INa, and Nav1.6 localization and consequent high-frequency firing require β1. We conclude that VGSC subunits function in macromolecular signaling complexes regulating both neuronal excitability and migration during cerebellar development.


The EMBO Journal | 2008

Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor

Tomoyuki Yamanaka; Haruko Miyazaki; Fumitaka Oyama; Masaru Kurosawa; Chika Washizu; Hiroshi Doi; Nobuyuki Nukina

In Huntingtons disease (HD), mutant Huntingtin, which contains expanded polyglutamine stretches, forms nuclear aggregates in neurons. The interactions of several transcriptional factors with mutant Huntingtin, as well as altered expression of many genes in HD models, imply the involvement of transcriptional dysregulation in the HD pathological process. The precise mechanism remains obscure, however. Here, we show that mutant Huntingtin aggregates interact with the components of the NF‐Y transcriptional factor in vitro and in HD model mouse brain. An electrophoretic mobility shift assay using HD model mouse brain lysates showed reduction in NF‐Y binding to the promoter region of HSP70, one of the NF‐Y targets. RT–PCR analysis revealed reduced HSP70 expression in these brains. We further clarified the importance of NF‐Y for HSP70 transcription in cultured neurons. These data indicate that mutant Huntingtin sequesters NF‐Y, leading to the reduction of HSP70 gene expression in HD model mice brain. Because suppressive roles of HSP70 on the HD pathological process have been shown in several HD models, NF‐Y could be an important target of mutant Huntingtin.


Journal of Biological Chemistry | 2009

Inhibition of Rho Kinases Enhances the Degradation of Mutant Huntingtin

Peter Bauer; Hon Kit Wong; Fumitaka Oyama; Anand Goswami; Misako Okuno; Yoshihiro Kino; Haruko Miyazaki; Nobuyuki Nukina

Huntington disease (HD) is a fatal hereditary neurodegenerative disease caused by an expansion of the polyglutamine (polyQ) stretch in huntingtin (htt). Whereas the pathological significance of the expanded polyQ has been clearly established and a tremendous effort to develop therapeutic tools for HD has been exerted, there is yet no effective cure. Whereas many molecules able to reduce the polyQ accumulation and aggregation have been identified, including several Rho kinase (ROCK) inhibitors, it remains very important to determine the mechanism of action of the potential drugs. ROCK inhibitors, including Y-27632 were reported to decrease aggregation of htt and androgen receptor (AR) through ROCK1 and protein kinase C-related protein kinase-2 (PRK-2). A downstream effector of ROCK1, actin-binding factor profilin, was shown to inhibit the mutant htt aggregation but not AR by direct interaction. We found that the anti-aggregation effect of ROCK inhibitors was not limited to the mutant htt and AR and that Y-27632 was also able to reduce the aggregation of ataxin-3 and atrophin-1 with expanded polyQ. These results suggested that in addition to the mechanism reported for htt and AR, there might also be other common mediators involved in the reduced aggregation of different polyQ proteins. In this study, we show that Y-27632 not only reduced the mutant htt aggregation by enhancing its degradation, but surprisingly was able to activate the main cellular degradation pathways, proteasome, and macroautophagy. We also show that this unique effect was mediated by ROCK1 and ROCK2.


Circulation Research | 2009

Genetically determined differences in sodium current characteristics modulate conduction disease severity in mice with cardiac sodium channelopathy.

Carol Ann Remme; Brendon P. Scicluna; Arie O. Verkerk; Ahmad S. Amin; Sandra van Brunschot; Leander Beekman; Vera H.M. Deneer; Catherine Chevalier; Fumitaka Oyama; Haruko Miyazaki; Nobuyuki Nukina; Ronald Wilders; Denis Escande; Rémi Houlgatte; Arthur A.M. Wilde; Hanno L. Tan; Marieke W. Veldkamp; Jacques M.T. de Bakker; Connie R. Bezzina

Conduction slowing of the electric impulse that drives the heartbeat may evoke lethal cardiac arrhythmias. Mutations in SCN5A, which encodes the pore-forming cardiac sodium channel &agr; subunit, are associated with familial arrhythmia syndromes based on conduction slowing. However, disease severity among mutation carriers is highly variable. We hypothesized that genetic modifiers underlie the variability in conduction slowing and disease severity. With the aim of identifying such modifiers, we studied the Scn5a1798insD/+ mutation in 2 distinct mouse strains, FVB/N and 129P2. In 129P2 mice, the mutation resulted in more severe conduction slowing particularly in the right ventricle (RV) compared to FVB/N. Pan-genomic mRNA expression profiling in the 2 mouse strains uncovered a drastic reduction in mRNA encoding the sodium channel auxiliary subunit &bgr;4 (Scn4b) in 129P2 mice compared to FVB/N. This corresponded to low to undetectable &bgr;4 protein levels in 129P2 ventricular tissue, whereas abundant &bgr;4 protein was detected in FVB/N. Sodium current measurements in isolated myocytes from the 2 mouse strains indicated that sodium channel activation in myocytes from 129P2 mice occurred at more positive potentials compared to FVB/N. Using computer simulations, this difference in activation kinetics was predicted to explain the observed differences in conduction disease severity between the 2 strains. In conclusion, genetically determined differences in sodium current characteristics on the myocyte level modulate disease severity in cardiac sodium channelopathies. In particular, the sodium channel subunit &bgr;4 (SCN4B) may constitute a potential genetic modifier of conduction and cardiac sodium channel disease.


Journal of Neurochemistry | 2006

Sodium channel β4 subunit : down-regulation and possible involvement in neuritic degeneration in Huntington's disease transgenic mice

Fumitaka Oyama; Haruko Miyazaki; Naoaki Sakamoto; Celine Becquet; Yoko Machida; Kumi Kaneko; Chiharu Uchikawa; Taishi Suzuki; Masaru Kurosawa; Tetsurou Ikeda; Akira Tamaoka; Takashi Sakurai; Nobuyuki Nukina

Sodium channel β4 is a very recently identified auxiliary subunit of the voltage‐gated sodium channels. To find the primarily affected gene in Huntingtons disease (HD) pathogenesis, we profiled HD transgenic mice using a high‐density oligonucleotide array and identified β4 as an expressed sequence tag (EST) that was significantly down‐regulated in the striatum of HD model mice and patients. Reduction in β4 started at a presymptomatic stage in HD mice, whereas other voltage‐gated ion channel subunits were decreased later. In contrast, spinal cord neurons, which generate only negligible levels of expanded polyglutamine aggregates, maintained normal levels of β4 expression even at the symptomatic stage. Overexpression of β4 induced neurite outgrowth in Neuro2a cells, and caused a thickening of dendrites and increased density of dendritic spines in hippocampal primary neurons, indicating that β4 modulates neurite outgrowth activities. These results suggest that down‐regulation of β4 may lead to abnormalities of sodium channel and neurite degeneration in the striatum of HD transgenic mice and patients with HD.

Collaboration


Dive into the Haruko Miyazaki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaru Kurosawa

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asako Tosaki

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Doi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Kumi Kaneko

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar

Mizuki Yamada

RIKEN Brain Science Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge