Harun H. Bayraktar
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Harun H. Bayraktar.
Journal of Biomechanics | 2004
Harun H. Bayraktar; Elise F. Morgan; Glen L. Niebur; Grayson E. Morris; Eric Wong; Tony M. Keaveny
The ability to determine trabecular bone tissue elastic and failure properties has biological and clinical importance. To date, trabecular tissue yield strains remain unknown due to experimental difficulties, and elastic moduli studies have reported controversial results. We hypothesized that the elastic and tensile and compressive yield properties of trabecular tissue are similar to those of cortical tissue. Effective tissue modulus and yield strains were calibrated for cadaveric human femoral neck specimens taken from 11 donors, using a combination of apparent-level mechanical testing and specimen-specific, high-resolution, nonlinear finite element modeling. The trabecular tissue properties were then compared to measured elastic modulus and tensile yield strain of human femoral diaphyseal cortical bone specimens obtained from a similar cohort of 34 donors. Cortical tissue properties were obtained by statistically eliminating the effects of vascular porosity. Results indicated that mean elastic modulus was 10% lower (p<0.05) for the trabecular tissue (18.0+/-2.8 GPa) than for the cortical tissue (19.9+/-1.8 GPa), and the 0.2% offset tensile yield strain was 15% lower for the trabecular tissue (0.62+/-0.04% vs. 0.73+/-0.05%, p<0.001). The tensile-compressive yield strength asymmetry for the trabecular tissue, 0.62 on average, was similar to values reported in the literature for cortical bone. We conclude that while the elastic modulus and yield strains for trabecular tissue are just slightly lower than those of cortical tissue, because of the cumulative effect of these differences, tissue strength is about 25% greater for cortical bone.
Journal of Biomechanics | 2003
Elise F. Morgan; Harun H. Bayraktar; Tony M. Keaveny
One outstanding issue regarding the relationship between elastic modulus and density for trabecular bone is whether the relationship depends on anatomic site. To address this, on-axis elastic moduli and apparent densities were measured for 142 specimens of human trabecular bone from the vertebra (n=61), proximal tibia (n=31), femoral greater trochanter (n=23), and femoral neck (n=27). Specimens were obtained from 61 cadavers (mean+/-SD age=67+/-15 years). Experimental protocols were used that minimized end-artifact errors and controlled for specimen orientation. Tissue moduli were computed for a subset of 18 specimens using high-resolution linear finite element analyses and also using two previously developed theoretical relationships (Bone 25 (1999) 481; J. Elasticity 53 (1999) 125). Resultant power law regressions between modulus and density did depend on anatomic site, as determined via an analysis of covariance. The inter-site differences were among the leading coefficients (p<0.02), but not the exponents (p>0.08), which ranged 1.49-2.18. At a given density, specimens from the tibia had higher moduli than those from the vertebra (p=0.01) and femoral neck (p=0.002); those from the trochanter had higher moduli than the vertebra (p=0.02). These differences could be as large as almost 50%, and errors in predicted values of modulus increased by up to 65% when site-dependence was ignored. These results indicate that there is no universal modulus-density relationship for on-axis loading. Tissue moduli computed using methods that account for inter-site architectural variations did not differ across site (p>0.15), suggesting that the site-specificity in apparent modulus-density relationships may be attributed to differences in architecture.
Journal of Biomechanics | 2002
Michael J. Jaasma; Harun H. Bayraktar; Glen L. Niebur; Tony M. Keaveny
Although recent nanoindentation studies have revealed the existence of substantial variations in tissue modulus within single specimens of trabecular bone, little is known regarding the biomechanical effects of such intraspecimen variations. In this study, high-resolution finite element modeling was used to investigate these effects. With limited literature information on the spatial distribution of intraspecimen variations in tissue modulus, two plausible spatial distributions were evaluated. In addition, three specimens (human femoral neck, human vertebral body, and bovine proximal tibia) were studied to assess the role of trabecular architecture. Results indicated that for all specimen/distribution combinations, the apparent modulus of the whole specimen decreased nonlinearly with increasing coefficient of variation (COV) of tissue modulus within the specimen. Apparent modulus decreased by <4% when tissue modulus COV was increased from 0% to 20% but decreased by 7-24%, depending on the assumed spatial distribution, for an increase in tissue modulus COV from 20% to 50%. For compressive loading to the elastic limit, increasing tissue modulus COV from 20% to 50% caused up to a 28-fold increase in the amount of failed tissue, depending on assumed spatial distribution and trabecular architecture. We conclude that intraspecimen variations in tissue modulus, if large, may have appreciable effects on trabecular apparent modulus and tissue-level failure. Since the observed effects depended on the assumed spatial distribution of the tissue modulus variations, a description of such distributions, particularly as a function of age, disease, and drug treatment, may provide new insight into trabecular bone structure-function relationships.
conference on high performance computing (supercomputing) | 2004
Mark F. Adams; Harun H. Bayraktar; Tony M. Keaveny; Panayiotis Papadopoulos
The solution of elliptic diffusion operators is the computational bottleneck in many simulations in a wide range of engineering and scientific disciplines. We present a truly scalable-ultrascalable-algebraic multigrid (AMG) linear solver for the diffusion operator in unstructured elasticity problems. Scalability is demonstrated with speedup studies of a non-linear micro-finite element analyses of a human vertebral body with over a half of a billion degrees of freedom on up to 4088 processors on the ACSI White machine. This work is significant because in the domain of unstructured implicit finite element analysis in solid mechanics with complex geometry, this is the first demonstration of a highly parallel and efficient application of a mathematically optimal linear solution method on a common large scale computing platform — the IBM SP Power3.
Journal of Biomechanics | 2012
Arnav Sanyal; Atul Gupta; Harun H. Bayraktar; Ronald Y. Kwon; Tony M. Keaveny
The shear strength of human trabecular bone may influence overall bone strength under fall loading conditions and failure at bone-implant interfaces. Here, we sought to compare shear and compressive yield strengths of human trabecular bone and elucidate the underlying failure mechanisms. We analyzed 54 specimens (5-mm cubes), all aligned with the main trabecular orientation and spanning four anatomic sites, 44 different cadavers, and a wide range of bone volume fraction (0.06-0.38). Micro-CT-based non-linear finite element analysis was used to assess the compressive and shear strengths and the spatial distribution of yielded tissue; the tissue-level constitutive model allowed for kinematic non-linearity and yielding with strength asymmetry. We found that the computed values of both the shear and compressive strengths depended on bone volume fraction via power law relations having an exponent of 1.7 (R(2)=0.95 shear; R(2)=0.97 compression). The ratio of shear to compressive strengths (mean±SD, 0.44±0.16) did not depend on bone volume fraction (p=0.24) but did depend on microarchitecture, most notably the intra-trabecular standard deviation in trabecular spacing (R(2)=0.23, p<0.005). For shear, the main tissue-level failure mode was tensile yield of the obliquely oriented trabeculae. By contrast, for compression, specimens having low bone volume fraction failed primarily by large-deformation-related tensile yield of horizontal trabeculae and those having high bone volume failed primarily by compressive yield of vertical trabeculae. We conclude that human trabecular bone is generally much weaker in shear than compression at the apparent level, reflecting different failure mechanisms at the tissue level.
conference on high performance computing (supercomputing) | 2003
Mark F. Adams; Harun H. Bayraktar; Tony M. Keaveny; Panayiotis Papdopoulos
Accurate micro-finite element analyses of whole bones require the solution of large sets of algebraic equations. Multigrid has proven to be an effective approach to the design of highly scalable linear solvers for solid mechanics problems. We present some of the first applications of scalable linear solvers, on massively parallel computers, to whole vertebral body structural analysis. We analyze the performance of our algebraic multigrid (AMG) methods on problems with over 237 million degrees of freedom on IBM SP parallel computers. We demonstrate excellent parallel scalability, both in the algorithms and the implementations, and analyze the nodal performance of the important AMG kernels on the IBM Power3 and Power4 architectures.
Journal of Biomechanics | 2004
Harun H. Bayraktar; Tony M. Keaveny
Journal of Biomechanical Engineering-transactions of The Asme | 2005
Harun H. Bayraktar; Atul Gupta; Ronald Y. Kwon; Panayiotis Papadopoulos; Tony M. Keaveny
Journal of Biomechanics | 2004
Elise F. Morgan; Harun H. Bayraktar; Oscar C. Yeh; Sharmila Majumdar; Andrew J. Burghardt; Tony M. Keaveny
Computer Methods in Applied Mechanics and Engineering | 2007
Senthil K. Eswaran; Harun H. Bayraktar; Mark Adams; Atul Gupta; Paul F. Hoffmann; David C. Lee; Panayiotis Papadopoulos; Tony M. Keaveny