Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haruyasu Nagai is active.

Publication


Featured researches published by Haruyasu Nagai.


Journal of Nuclear Science and Technology | 2011

Preliminary Estimation of Release Amounts of 131I and 137Cs Accidentally Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere

Masamichi Chino; Hiromasa Nakayama; Haruyasu Nagai; Hiroaki Terada; Genki Katata; Hiromi Yamazawa

(2011). Preliminary Estimation of Release Amounts of 131I and 137Cs Accidentally Discharged from the Fukushima Daiichi Nuclear Power Plant into the Atmosphere. Journal of Nuclear Science and Technology: Vol. 48, No. 7, pp. 1129-1134.


Journal of Environmental Radioactivity | 2012

Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion.

Hiroaki Terada; Genki Katata; Masamichi Chino; Haruyasu Nagai

Regional-scale atmospheric dispersion simulations were carried out to verify the source term of (131)I and (137)Cs estimated in our previous studies, and to analyze the atmospheric dispersion and surface deposition during the Fukushima Dai-ichi Nuclear Power Plant accident. The accuracy of the source term was evaluated by comparing the simulation results with measurements of daily and monthly surface depositions (fallout) over land in eastern Japan from March 12 to April 30, 2011. The source term was refined using observed air concentrations of radionuclides for periods when there were significant discrepancies between the calculated and measured daily surface deposition, and when environmental monitoring data, which had not been used in our previous studies, were now available. The daily surface deposition using the refined source term was predicted mostly to within a factor of 10, and without any apparent bias. Considering the errors in the model prediction, the estimated source term is reasonably accurate during the period when the plume flowed over land in Japan. The analysis of regional-scale atmospheric dispersion and deposition suggests that the present distribution of a large amount of (137)Cs deposition in eastern Japan was produced primarily by four events that occurred on March 12, 15-16, 20, and 21-23. The ratio of wet deposition to the total varied widely depending on the influence by the particular event.


Journal of Nuclear Science and Technology | 2013

Source term estimation of atmospheric release due to the Fukushima Dai-ichi Nuclear Power Plant accident by atmospheric and oceanic dispersion simulations

Takuya Kobayashi; Haruyasu Nagai; Masamichi Chino; Hideyuki Kawamura

The source term of the atmospheric release of 131I and 137Cs due to the Fukushima Dai-ichi Nuclear Power Plant accident estimated by previous studies was validated and refined by coupling atmospheric and oceanic dispersion simulations with observed 134Cs in seawater collected from the Pacific Ocean. By assuming the same release rate for 134Cs and 137Cs, the sea surface concentration of 134Cs was calculated using the previously estimated source term and was compared with measurement data. The release rate of 137Cs was refined to reduce underestimation of measurements, which resulted in a larger value than that previously estimated. In addition, the release rate of 131I was refined to follow the radioactivity ratio of 137Cs. As a result, the total amounts of 131I and 137Cs discharged into the atmosphere from 5 JST on March 12 to 0 JST on March 20 were estimated to be approximately 2.0 × 1017 and 1.3 × 1016 Bq, respectively.


Science of The Total Environment | 2012

Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions

Jun Koarashi; Mariko Atarashi-Andoh; Takeshi Matsunaga; Tsutomu Sato; Seiya Nagao; Haruyasu Nagai

The Fukushima Dai-ichi nuclear power plant accident in Japan, triggered by a big earthquake and the resulting tsunami on 11 March 2011, caused a substantial release of radiocesium ((137)Cs and (134)Cs) and a subsequent contamination of soils in a range of terrestrial ecosystems. Identifying factors and processes affecting radiocesium retention in these soils is essential to predict how the deposited radiocesium will migrate through the soil profile and to other biological components. We investigated vertical distributions of radiocesium and physicochemical properties in soils (to 20 cm depth) at 15 locations under different land-use types (croplands, grasslands, and forests) within a 2 km × 2 km mesh area in Fukushima city. The total (137)Cs inventory deposited onto and into soil was similar (58.4±9.6 kBq m(-2)) between the three different land-use types. However, aboveground litter layer at the forest sites and herbaceous vegetation at the non-forested sites contributed differently to the total (137)Cs inventory. At the forest sites, 50-91% of the total inventory was observed in the litter layer. The aboveground vegetation contribution was in contrast smaller (<35%) at the other sites. Another remarkable difference was found in vertical distribution of (137)Cs in mineral soil layers; (137)Cs penetrated deeper in the forest soil profiles than in the non-forested soil profiles. We quantified (137)Cs retention at surface soil layers, and showed that higher (137)Cs retention can be explained in part by larger amounts of silt- and clay-sized particles in the layers. More importantly, the (137)Cs retention highly and negatively correlated with soil organic carbon content divided by clay content across all land-use types. The results suggest that organic matter inhibits strong adsorption of (137)Cs on clay minerals in surface soil layers, and as a result affects the vertical distribution and thus the mobility of (137)Cs in soil, particularly in the forest ecosystems.


Journal of Environmental Radioactivity | 2012

Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi Nuclear Power Plant accident

Genki Katata; Hiroaki Terada; Haruyasu Nagai; Masamichi Chino

To understand how the high dose rate zones were created during the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) accident on March 2011, the atmospheric dispersion of radionuclides during the period from 15 to 17 March was reproduced by using a computer-based nuclear emergency response system, WSPEEDI-II. With use of limited environmental monitoring data, prediction accuracy of meteorological and radiological fields by the system was improved to obtain best estimates of release rates, radiation dose maps, and plume movements. A large part of current high dose rate zones in Fukushima was explained by simulated surface deposition of radionuclides due to major releases of radionuclides on 15 March. In the simulation, the highest dose rate zones to the northwest of FNPP1 were created by a significant deposition of radionuclides discharged from FNPP1 during the afternoon. The results indicate that two environmental factors, i.e., rainfall and topography, strongly affected the spatial patterns of surface deposition of radionuclides. The wet deposition due to rainfall particularly played an important role in the formation of wide and heterogeneous distributions of high dose rate zones. The simulation also demonstrated that the radioactive plume flowed along the valleys to its leeward, which can expand the areas of a large amount of surface deposition in complex topography.


Science of The Total Environment | 2013

Comparison of the vertical distributions of Fukushima nuclear accident radiocesium in soil before and after the first rainy season, with physicochemical and mineralogical interpretations

Takeshi Matsunaga; Jun Koarashi; Mariko Atarashi-Andoh; Seiya Nagao; Tsutomu Sato; Haruyasu Nagai

Effect of intense rainfall on the distribution of Fukushima-accident-derived (137)Cs in soil was examined. Inventories and vertical distributions of (137)Cs in soils were determined at 15 locations (including croplands, grasslands, and forests) in Fukushima city in the post-rainy season, approximately 4.5months after the accident, and were compared with those in the pre-rainy season determined in our former study. The (137)Cs inventory levels scarcely changed between points in time spanning the first rainy season after the accident. Moreover, the majority of (137)Cs remained stored in the aboveground vegetation and in the upper 5cm of soil layer at undisturbed locations in the post-rainy season. A more quantitative analysis with the characterization of the vertical profile of (137)Cs using the relaxation length confirmed that the vertical profile was almost unchanged at most locations. Accordingly, it is concluded that rainfall during the rainy season had a limited effect on (137)Cs distribution in the soil, indicating the very low mobility. Chemical extraction of (137)Cs from selected soil samples indicated that (137)Cs in the soil was barely water soluble, and even the fraction extracted with 1M ammonium acetate was only approximately 10%. This further supports the low mobility of (137)Cs in our soils. Soil mineralogical analyses, which included the identification of clay minerals, suggested that smectite and mica could lower the exchangeable fraction of (137)Cs. However, no direct relationship was obtained between mineral composition and (137)Cs retention in the upper soil layer. In contrast, positive correlations were observed between (137)Cs extractability and soil properties such as pH, organic matter content, finer-sized particle content, and cation-exchange capacity. These results suggest that the mineralogical effect on the firm fixation of (137)Cs on soil constituents may be masked by the non-specific adsorption offered by the physicochemical properties of the soils.


Journal of Applied Meteorology and Climatology | 2011

LES Analysis of the Aerodynamic Surface Properties for Turbulent Flows over Building Arrays with Various Geometries

Hiromasa Nakayama; Tetsuya Takemi; Haruyasu Nagai

AbstractThis paper describes aerodynamic roughness properties for turbulent flows over various building arrays that represent realistic urban surface geometries. First, building morphological characteristics such as roughness density λf and building height variability Vh, defined respectively as the ratio of total frontal area of roughness elements to the total surface area and the ratio of standard deviation in building height to the average building height of the study site, were investigated. Next, large-eddy simulations (LESs) of turbulent flows over building arrays were performed with various surface geometries characterized by a wide range of values for both λf and Vh, based on this building morphological analysis. Third, aerodynamic roughness parameters such as roughness length z0 and drag coefficient were evaluated for the central Tokyo area from the values of z0 and Vh using the LES results. The values of z0 and as a function of both λf and Vh were comparable to those found in earlier studies. Th...


Journal of Applied Meteorology and Climatology | 2008

Development of a Land Surface Model Including Cloud Water Deposition on Vegetation

Genki Katata; Haruyasu Nagai; Thomas Wrzesinsky; Otto Klemm; Werner Eugster; Reto Burkard

Abstract A land surface model including cloud (fog) water deposition on vegetation was developed to better predict the heat and water exchanges between the biosphere and atmosphere. A new scheme to calculate cloud water deposition on vegetation was implemented in this model. High performance of the model was confirmed by comparison of calculated heat and cloud water flux over a forest with measurements. The new model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the commonly used cloud water deposition model. In addition, simple linear relationships between wind speed over the canopy (|U|) and deposition velocity of cloud water (Vdep) were found both in measurements and in the calculations. Numerical experiments using the model were performed to study the influences of two types of leaves (needle and broad leaves) and canopy structure parameters (total leaf area index and canopy height) on Vdep. When the size of broad leaves is small, they ...


Journal of Hydrometeorology | 2007

Development of a Land Surface Model Including Evaporation and Adsorption Processes in the Soil for the Land–Air Exchange in Arid Regions

Genki Katata; Haruyasu Nagai; Hiromasa Ueda; Nurit Agam; Pedro Berliner

Abstract A one-dimensional soil model has been developed to better predict heat and water exchanges in arid and semiarid regions. New schemes to calculate evaporation and adsorption in the soil were incorporated in the model. High performance of the model was confirmed by comparison of predicted surface fluxes, soil temperature, and volumetric soil water content with those measured in the Negev Desert, Israel. Evaporation and adsorption processes in the soil have a large impact on the heat and water exchange between the atmosphere and land surface and are necessary to accurately predict them. Numerical experiments concerning the drying process of soil are performed using the presented model and a commonly used land surface model. The results indicated that, when the dry soil layer (DSL) develops, water vapor flux to the atmosphere is caused by evaporation in the soil rather than evaporation at the ground surface. Moreover, the adsorption process has some impact on the water and heat balance at the ground ...


Journal of Nuclear Science and Technology | 2009

Development of Local-Scale High-Resolution Atmospheric Dispersion Model Using Large-Eddy Simulation Part 1: Turbulent Flow and Plume Dispersion over a Flat Terrain

Hiromasa Nakayama; Haruyasu Nagai

We have developed a LOcal-scale High-resolution atmospheric DIspersion Model using Large-Eddy Simulation (LOHDIM-LES) to assess the safety at nuclear facilities and to respond to emergencies against accidental or intentional release of radioactive materials (e.g., a terrorist attack in an urban area). In Part 1, the unsteady behavior of a plume over a flat terrain was successfully simulated. In Part 2, a new scheme to generate a spatially developing turbulent boundary layer flow was proposed. Then, the large-eddy simulation (LES) model for turbulent flow and plume dispersion around an isolated building was validated. In this study, we extend the LES model to turbulent flows and plume dispersion in various building arrays that represent typical urban surface geometries. Concerning the characteristics of flow and dispersion in building arrays, the flow patterns associated with obstacle densities and the distribution patterns of mean and root-mean-square (r.m.s.) concentrations agree well with those of the wind tunnel experiments. It is shown that the LES model successfully simulates the unsteady behaviors of turbulent flows and plume dispersion in urban-type surface geometries.

Collaboration


Dive into the Haruyasu Nagai's collaboration.

Top Co-Authors

Avatar

Genki Katata

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Hiromasa Nakayama

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Hiroaki Terada

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Masamichi Chino

Japan Atomic Energy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Masakazu Ota

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Jun Koarashi

Japan Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar

Mizuo Kajino

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge