Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haseeb Zubair is active.

Publication


Featured researches published by Haseeb Zubair.


Current Drug Targets | 2012

A Prooxidant Mechanism for the Anticancer and Chemopreventive Properties of Plant Polyphenols

Husain Yar Khan; Haseeb Zubair; Mohd Fahad Ullah; Aamir Ahmad; S. M. Hadi

Plant-derived polyphenols, a prominent class of phytochemicals, are considered important components of human diet. A number of them are known to possess chemopreventive and therapeutic properties against various diseases including cancer. Several studies using cancer cell lines and animal models of carcinogenesis have shown that a wide range of polyphenols possess anticancer and apoptosis-inducing properties. Notably, an important aspect of the chemopreventive action of polyphenols is their differential activity in selectively targeting cancer cells while sparing normal cells. However, the mechanism through which polyphenols modulate their cancer cell selective anticancer effects has not been clearly delineated. In this regard, identification of a definitive anticancer mechanism of polyphenols would contribute to establish them as potent lead compounds for the synthesis of novel anticancer drugs. Although polyphenols are generally recognized as antioxidants, they also act as prooxidants inducing DNA degradation in the presence of metal ions such as copper. Based on our own observations and those of others, a mechanism for the anticancer properties of polyphenols that involves mobilization of chromatin-bound copper and consequent prooxidant action leading to cell death, was proposed. Since it is known that tissue and cellular copper levels are significantly elevated in a number of malignancies, cancer cells would be more subject to redox cycling between copper ions and polyphenols to generate reactive oxygen species (ROS) responsible for DNA breakage. This review discusses such a copper-dependent prooxidant mechanism of action of polyphenols that accounts for their observed chemopreventive properties, as also for their preferential cytotoxicity towards cancer cells.


Molecular Nutrition & Food Research | 2011

SOY ISOFLAVONE GENISTEIN INDUCES CELL DEATH IN BREAST CANCER CELLS THROUGH MOBILIZATION OF ENDOGENOUS COPPER IONS AND GENERATION OF REACTIVE OXYGEN SPECIES

Mohammad Fahad Ullah; Aamir Ahmad; Haseeb Zubair; Husain Yar Khan; Zhiwei Wang; Fazlul H. Sarkar; S. M. Hadi

SCOPE Worldwide geographical variation in cancer incidence indicates a correlation between dietary habits and cancer risk. Epidemiological studies have suggested that populations with high isoflavone intake through soy consumption have lower rates of breast, prostate, and colon cancer. Isoflavone genistein in soybean is considered a potent chemopreventive agent against cancer. Although several mechanisms have been proposed, a clear anticancer action mechanism of genistein is still not known. METHODS AND RESULTS Here, we show that the cytotoxic action of genistein against breast cancer cells involves mobilization of endogenous copper. Further, whereas the copper specific chelator neocuproine is able to inhibit the apoptotic potential of genistein, the molecules which specifically bind iron (desferroxamine mesylate) and zinc (histidine) are relatively ineffective in causing such inhibition. Also, genistein-induced apoptosis in these cells is inhibited by scavengers of reactive oxygen species (ROS) implicating ROS as effector elements leading to cell death. CONCLUSIONS As copper levels are known to be considerably elevated in almost all types of cancers, in this proof-of-concept study we show that genistein is able to target endogenous copper leading to prooxidant signaling and consequent cell death. We believe that such a mechanism explains the anticancer effect of genistein as also its preferential cytotoxicity towards cancer cells.


Pharmaceutical Research | 2010

Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer.

S. M. Hadi; M. F. Ullah; Asfar S. Azmi; Aamir Ahmad; Uzma Shamim; Haseeb Zubair; Husain Yar Khan

Plant polyphenols are important components of human diet, and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring anti-oxidants but also act as pro-oxidants catalyzing DNA degradation in the presence of metal ions such as copper. The plant polyphenol resveratrol confers resistance to plants against fungal agents and has been implicated as a cancer chemopreventive agent. Of particular interest is the observation that resveratrol has been found to induce apoptosis in cancer cell lines but not in normal cells. Over the last few years, we have shown that resveratrol is capable of causing DNA breakage in cells such as human lymphocytes. Such cellular DNA breakage is inhibited by copper specific chelators but not by iron and zinc chelating agents. Similar results are obtained by using permeabilized cells or with isolated nuclei, indicating that chromatin-bound copper is mobilized in this reaction. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and resveratrol to generate reactive oxygen species responsible for DNA cleavage. The results are in support of our hypothesis that anti-cancer mechanism of plant polyphenols involves mobilization of endogenous copper and the consequent pro-oxidant action. Such a mechanism better explains the anti-cancer effects of resveratrol, as it accounts for the preferential cytotoxicity towards cancer cells.


Molecular Nutrition & Food Research | 2014

Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemopreventive action

Husain Yar Khan; Haseeb Zubair; Mohd Faisal; Mohd Fahad Ullah; Mohd Farhan; Fazlul H. Sarkar; Aamir Ahmad; S. M. Hadi

SCOPE Anticancer polyphenolic nutraceuticals from fruits, vegetables, and spices are generally recognized as antioxidants, but can be prooxidants in the presence of copper ions. We earlier proposed a mechanism for such activity of polyphenols and now we provide data in multiple cancer cell lines in support of our hypothesis. METHODS AND RESULTS Through multiple assays, we show that polyphenols luteolin, apigenin, epigallocatechin-3-gallate, and resveratrol are able to inhibit cell proliferation and induce apoptosis in different cancer cell lines. Such cell death is prevented to a significant extent by cuprous chelator neocuproine and reactive oxygen species scavengers. We also show that normal breast epithelial cells, cultured in a medium supplemented with copper, become sensitized to polyphenol-induced growth inhibition. CONCLUSION Since the concentration of copper is significantly elevated in cancer cells, our results strengthen the idea that an important anticancer mechanism of plant polyphenols is mediated through intracellular copper mobilization and reactive oxygen species generation leading to cancer cell death. Moreover, this prooxidant chemopreventive mechanism appears to be a mechanism common to several polyphenols with diverse chemical structures and explains the preferential cytotoxicity of these compounds toward cancer cells.


Cell Death and Disease | 2013

Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants

Haseeb Zubair; Husain Yar Khan; A Sohail; S Azim; Mohammad Fahad Ullah; Aamir Ahmad; Fazlul H. Sarkar; S. M. Hadi

Plant-derived dietary antioxidants have attracted considerable interest in recent past for their chemopreventive and cancer therapeutic abilities in animal models. Thymoquinone (TQ) is the major bioactive constituent of volatile oil of Nigella sativa and has been shown to exert various pharmacological properties, such as anti-inflammatory, cardiovascular, analgesic, anti-neoplastic, anticancer and chemopreventive. Although several mechanisms have been suggested for the chemopreventive and anticancer activity of TQ, a clear mechanism of action of TQ has not been elucidated. TQ is a known antioxidant at lower concentrations and most of the studies elucidating the mechanism have centered on the antioxidant property. However, recent publications have shown that TQ may act as a prooxidant at higher concentrations. It is well known that plant-derived antioxidants can switch to prooxidants even at low concentrations in the presence of transition metal ions such as copper. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Copper is an important metal ion present in the chromatin and is closely associated with DNA bases, particularly guanine. Using human peripheral lymphocytes and comet assay, we first show that TQ is able to cause oxidative cellular DNA breakage. Such a DNA breakage can be inhibited by copper-chelating agents, neocuproine and bathocuproine, and scavengers of reactive oxygen species. Further, it is seen that TQ targets cellular copper in prostate cancer cell lines leading to a prooxidant cell death. We believe that such a prooxidant cytotoxic mechanism better explains the anticancer activity of plant-derived antioxidants.


Biometals | 2011

Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism

Husain Yar Khan; Haseeb Zubair; Mohd Fahad Ullah; Aamir Ahmad; S. M. Hadi

To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.


British Journal of Cancer | 2017

Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK.

Girijesh Kumar Patel; Mohammad Aslam Khan; Arun Bhardwaj; Sanjeev K. Srivastava; Haseeb Zubair; Mary C. Patton; Seema Singh; Moh'd M. Khushman; Ajay P. Singh

Background:Chemoresistance is a significant clinical problem in pancreatic cancer (PC) and underlying molecular mechanisms still remain to be completely understood. Here we report a novel exosome-mediated mechanism of drug-induced acquired chemoresistance in PC cells.Methods:Differential ultracentrifugation was performed to isolate extracellular vesicles (EVs) based on their size from vehicle- or gemcitabine-treated PC cells. Extracellular vesicles size and subtypes were determined by dynamic light scattering and marker profiling, respectively. Gene expression was examined by qRT-PCR and/or immunoblot analyses, and direct targeting of DCK by miR-155 was confirmed by dual-luciferase 3′-UTR reporter assay. Flow cytometry was performed to examine the apoptosis indices and reactive oxygen species (ROS) levels in PC cells using specific dyes. Cell viability was determined using the WST-1 assay.Results:Conditioned media (CM) from gemcitabine-treated PC cells (Gem-CM) provided significant chemoprotection to subsequent gemcitabine toxicity and most of the chemoresistance conferred by Gem-CM resulted from its EVs fraction. Sub-fractionation grouped EVs into distinct subtypes based on size distribution and marker profiles, and exosome (Gem-Exo) was the only sub-fraction that imparted chemoresistance. Gene expression analyses demonstrated upregulation of SOD2 and CAT (ROS-detoxifying genes), and downregulation of DCK (gemcitabine-metabolising gene) in Gem-Exo-treated cells. SOD/CAT upregulation resulted, at least in part, from exosome-mediated transfer of their transcripts and they suppressed basal and gemcitabine-induced ROS production, and partly promoted chemoresistance. DCK downregulation occurred through exosome-delivered miR-155 and either the functional suppression of miR-155 or restoration of DCK led to marked abrogation of Gem-Exo-mediated chemoresistance.Conclusions:Together, these findings establish a novel role of exosomes in mediating the acquired chemoresistance of PC.


Cell Biochemistry and Biophysics | 2013

The Prooxidant Action of Dietary Antioxidants Leading to Cellular DNA Breakage and Anticancer Effects: Implications for Chemotherapeutic Action Against Cancer

M. F. Ullah; Aamir Ahmad; Husain Yar Khan; Haseeb Zubair; Fazlul H. Sarkar; S. M. Hadi

Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells.


European Journal of Pharmaceutical Sciences | 2012

Apogossypolone, derivative of gossypol, mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage

Haseeb Zubair; Husain Yar Khan; Mohd Fahad Ullah; Aamir Ahmad; Daocheng Wu; S. M. Hadi

Gossypol is a polyphenolic aldehyde that is produced in the cotton plant. Since long it has been reported to possess antiproliferative activity against a variety of cancer cell lines as well as tumor regression in animal models. However, the toxicity of gossypol does not permit it to be an effective antitumor agent. One of the derivatives of gossypol to show promising results is apogossypolone. For example, it has been shown to specifically target tumor growth in hepatocellular carcinoma xenograft in nude mice without causing any damage to normal tissue. Using human peripheral lymphocytes, in this paper we show that both gossypol and its semi-synthetic derivative apogossypolone cause oxidative DNA breakage in these cells through the mobilization of endogenous copper ions. Such cellular DNA breakage is inhibited by copper specific chelator but nor by iron or zinc chelating agents. Similar results are obtained with isolated nuclei indicating that chromatin bound copper is mobilized in this reaction. Further, apogossypolone showed enhanced DNA breakage and increased oxidative stress in whole lymphocytes as compared with gossypol indicating that this is possibly the result of greater permeability of apogossypolone. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be subject to greater electron transfer between copper ions and gossypol/apogossypolone to generate reactive oxygen species responsible for DNA cleavage. This may account for the preferential cytotoxicity of apogossypolone towards tumor cells.


Molecules | 2017

Cancer Chemoprevention by Phytochemicals: Nature’s Healing Touch

Haseeb Zubair; Shafquat Azim; Aamir Ahmad; Mohammad Aslam Khan; Girijesh Kumar Patel; Seema Singh; Ajay Singh

Phytochemicals are an important part of traditional medicine and have been investigated in detail for possible inclusion in modern medicine as well. These compounds often serve as the backbone for the synthesis of novel therapeutic agents. For many years, phytochemicals have demonstrated encouraging activity against various human cancer models in pre-clinical assays. Here, we discuss select phytochemicals—curcumin, epigallocatechin-3-gallate (EGCG), resveratrol, plumbagin and honokiol—in the context of their reported effects on the processes of inflammation and oxidative stress, which play a key role in tumorigenesis. We also discuss the emerging evidence on modulation of tumor microenvironment by these phytochemicals which can possibly define their cancer-specific action. Finally, we provide recent updates on how low bioavailability, a major concern with phytochemicals, is being circumvented and the general efficacy being improved, by synthesis of novel chemical analogs and nanoformulations.

Collaboration


Dive into the Haseeb Zubair's collaboration.

Top Co-Authors

Avatar

Aamir Ahmad

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Husain Yar Khan

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

S. M. Hadi

Aligarh Muslim University

View shared research outputs
Top Co-Authors

Avatar

Seema Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ajay P. Singh

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Arun Bhardwaj

National Dairy Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shafquat Azim

University of South Alabama

View shared research outputs
Top Co-Authors

Avatar

Sanjeev K. Srivastava

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge