S. M. Hadi
Aligarh Muslim University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by S. M. Hadi.
Chemico-Biological Interactions | 1999
Haseeb Ahsan; Nazneen Parveen; Nizam U. Khan; S. M. Hadi
Curcumin, a naturally occurring phytochemical responsible for the colour of turmeric shows a wide range of pharmacological properties including antioxidant, anti-inflammatory and anti-cancer effects. We have earlier shown that curcumin in the presence of Cu(II) causes strand cleavage in DNA through generation of reactive oxygen species, particularly the hydroxyl radical. Thus, curcumin shows both antioxidant as well as pro-oxidant effects. In order to understand the chemical basis of various biological properties of curcumin, we have studied the structure-activity relationship between curcumin and its two naturally occurring derivatives namely demethoxycurcumin (dmC) and bisdemethoxycurcumin (bdmC). Curcumin was found to be the most effective in the DNA cleavage reaction and a reducer of Cu(II) followed by dmC and bdmC. The rate of formation of hydroxyl radicals by the three curcuminoids also showed a similar pattern. The relative antioxidant activity was examined by studying the effect of these curcuminoids on cleavage of plasmid DNA by Fe(II)-EDTA system (hydroxyl radicals) and the generation of singlet oxygen by riboflavin. The results indicate that curcumin is considerably more active both as an antioxidant as well as an oxidative DNA cleaving agent. The DNA cleavage activity is the consequence of binding of Cu(II) to various sites on the curcumin molecule. Based on the present results, we propose three binding sites for Cu(II). Two of the sites are provided by the phenolic and methoxy groups on the two benzene rings and the third site is due to the presence of 1,3-diketone system between the rings. Furthermore, both the antioxidant as well as pro-oxidant effects of curcuminoids are determined by the same structural moieties.
Iubmb Life | 2000
S. M. Hadi; S. F. Asad; Saurabh Singh; Aamir Ahmad
Several plant‐derived polyphenolic compounds are considered to possess anticancer and apoptosis‐inducing properties in cancer cells. Such compounds are recognized as naturally occurring antioxidants but also exhibit prooxidant properties under appropriate conditions. Evidence in the literature suggests that the antioxidant properties of polyphenolics such as gallotannins, curcumin, and resveratrol may not fully account for their chemopreventive effects. We propose a mechanism for the cytotoxic action of these compounds against cancer cells that involves mobilization of endogenous copper and the consequent prooxidant action.
Chemico-Biological Interactions | 2000
Nelofer S Khan; Aamir Ahmad; S. M. Hadi
Tannic acid has numerous food and pharmacological applications. It is an additive in medicinal products, and is used as a flavouring agent and as an anti-oxidant in various foods and beverages. We have previously shown that tannic acid in the presence of Cu(II) causes DNA degradation through generation of reactive oxygen species. On the other hand, it exhibits antimutagenic and anticarcinogenic activities, and induces apoptosis in animal cells. It is known that most plant-derived polyphenolic anti-oxidants also act as pro-oxidants under certain conditions. In this paper, we compare the anti-oxidant and pro-oxidant properties of tannic acid and its structural component gallic acid. It is shown that tannic acid is the most efficient generator of the hydroxyl radical in the presence of Cu(II), as compared with gallic acid and its analogues syringic acid and pyrogallol. The anti-oxidant activity of tannic acid was studied by its effect on hydroxyl radical and singlet oxygen mediated cleavage of plasmid DNA. Again, tannic acid provided the maximum protection against cleavage, while gallic acid and its structural analogues were found to be non-inhibitory or partially inhibitory. The results suggest that the structural features of tannic acid that are important for its anti-oxidant action are also those that contribute to the generation of hydroxyl radicals in the presence of Cu(II). Restriction analysis of treated phage DNA and thermal melting profiles of calf thymus DNA indicated that tannic acid strongly binds to DNA. Indirect evidence indicates that modification of DNA bases may also occur.
Cancer Letters | 1998
Haseeb Ahsan; S. M. Hadi
Curcumin, a naturally occurring phytochemical responsible for the colour of turmeric, has shown a wide range of pharmacological properties including anti-inflammatory, anti-tumour promoter and anti-oxidant effects. In this paper we show that in the presence of Cu(II), curcumin caused breakage of calf thymus and supercoiled plasmid pBR322 DNA. The products were relaxed circles with no detectable linear forms. Other metal ions tested (Mg(II), Ca(II), Fe(II) and Ni(II)) were ineffective or less effective in the DNA breakage reaction. Cu(I) was shown to be an essential intermediate by using the Cu(I)-specific sequestering reagent neocuproine. The involvement of active oxygen species, such as H2O2 and (1)O2 was established by the inhibition of DNA breakage by catalase and azide. Curcumin is also able to directly produce O2- and H2O2 and in the presence of Cu(II), OH is generated. Absorption spectra of curcumin in the presence of DNA indicated that a complex is formed between the two. The results are discussed in relation to the established pro-oxidant activities of other known anti-oxidants.
FEBS Letters | 2006
Asfar S. Azmi; Showket H. Bhat; Sarmad Hanif; S. M. Hadi
Plant polyphenols are important components of human diet and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing DNA degradation in the presence of transition metal ions such as copper. Using human peripheral lymphocytes and Comet assay we have previously confirmed that resveratrol–Cu(II) is indeed capable of causing DNA degradation in cells. In this paper we show that the polyphenols alone (in the absence of added copper) are also capable of causing DNA breakage in cells. Incubation of lymphocytes with neocuproine inhibited the DNA degradation confirming that Cu(I) is an intermediate in the DNA cleavage reaction. Further, we have also shown that polyphenols generate oxidative stress in lymphocytes which is inhibited by scavengers of reactive oxygen species and neocuproine. These results are in further support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper, possibly chromatin bound copper, and the consequent prooxidant action.
Current Drug Targets | 2012
Husain Yar Khan; Haseeb Zubair; Mohd Fahad Ullah; Aamir Ahmad; S. M. Hadi
Plant-derived polyphenols, a prominent class of phytochemicals, are considered important components of human diet. A number of them are known to possess chemopreventive and therapeutic properties against various diseases including cancer. Several studies using cancer cell lines and animal models of carcinogenesis have shown that a wide range of polyphenols possess anticancer and apoptosis-inducing properties. Notably, an important aspect of the chemopreventive action of polyphenols is their differential activity in selectively targeting cancer cells while sparing normal cells. However, the mechanism through which polyphenols modulate their cancer cell selective anticancer effects has not been clearly delineated. In this regard, identification of a definitive anticancer mechanism of polyphenols would contribute to establish them as potent lead compounds for the synthesis of novel anticancer drugs. Although polyphenols are generally recognized as antioxidants, they also act as prooxidants inducing DNA degradation in the presence of metal ions such as copper. Based on our own observations and those of others, a mechanism for the anticancer properties of polyphenols that involves mobilization of chromatin-bound copper and consequent prooxidant action leading to cell death, was proposed. Since it is known that tissue and cellular copper levels are significantly elevated in a number of malignancies, cancer cells would be more subject to redox cycling between copper ions and polyphenols to generate reactive oxygen species (ROS) responsible for DNA breakage. This review discusses such a copper-dependent prooxidant mechanism of action of polyphenols that accounts for their observed chemopreventive properties, as also for their preferential cytotoxicity towards cancer cells.
Molecular Nutrition & Food Research | 2011
Mohammad Fahad Ullah; Aamir Ahmad; Haseeb Zubair; Husain Yar Khan; Zhiwei Wang; Fazlul H. Sarkar; S. M. Hadi
SCOPE Worldwide geographical variation in cancer incidence indicates a correlation between dietary habits and cancer risk. Epidemiological studies have suggested that populations with high isoflavone intake through soy consumption have lower rates of breast, prostate, and colon cancer. Isoflavone genistein in soybean is considered a potent chemopreventive agent against cancer. Although several mechanisms have been proposed, a clear anticancer action mechanism of genistein is still not known. METHODS AND RESULTS Here, we show that the cytotoxic action of genistein against breast cancer cells involves mobilization of endogenous copper. Further, whereas the copper specific chelator neocuproine is able to inhibit the apoptotic potential of genistein, the molecules which specifically bind iron (desferroxamine mesylate) and zinc (histidine) are relatively ineffective in causing such inhibition. Also, genistein-induced apoptosis in these cells is inhibited by scavengers of reactive oxygen species (ROS) implicating ROS as effector elements leading to cell death. CONCLUSIONS As copper levels are known to be considerably elevated in almost all types of cancers, in this proof-of-concept study we show that genistein is able to target endogenous copper leading to prooxidant signaling and consequent cell death. We believe that such a mechanism explains the anticancer effect of genistein as also its preferential cytotoxicity towards cancer cells.
Molecular and Cellular Biochemistry | 1992
Arshad Rahman; Fabeha Fazal; Julie Greensill; K. Ainley; J.H. Parish; S. M. Hadi
The naturally occurring flavonoid, quercetin, in the presence of Cu(II) and molecular oxygen caused breakage of calf thymus DNA, supercoiled pBR322 plasmid DNA and single stranded M13 phage DNA. In the case of the plasmid, the product(s) were relaxed circles or a mixture of these and linear molecules depending upon the conditions. For the breakage reaction, Cu(II) could be replaced by Fe(III) but not by other ions tested [Fe(II), Co(II), Ni(II), Mn(II) and Ca(II)]. Structurally related flavonoids, rutin, galangin, apigenin and fisetin were effective or less effecive than quercetin in causing DNA breakage. In the case of the quercetin-Cu(II) reaction, Cu(I) was shown to be essential intermediate by using the Cu(1)-sequestering reagent, bathocuproine. By using Job plots we established that, in the absence of DNA, five Cu(II) ions were reduced by one quercetin molecule; in contrast two ions were reduced per quercetin molecule in the DNA breakage reaction. Equally neocuproine inhibited the DNA breakage reaction. The involvement of active oxygen in the reaction was established by the inhibition of DNA breakage by superoxide dismutase, iodide, mannitol, formate and catalase (the inhibition was complete in the last case). The strand scission reaction was shown to account for the biological activity of quercetin as assayed by bacteriophage inactivation. From these data we propose a mechanism for the DNA strand scission reaction of quercetin and related flavonoids.
Pharmaceutical Research | 2010
S. M. Hadi; M. F. Ullah; Asfar S. Azmi; Aamir Ahmad; Uzma Shamim; Haseeb Zubair; Husain Yar Khan
Plant polyphenols are important components of human diet, and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring anti-oxidants but also act as pro-oxidants catalyzing DNA degradation in the presence of metal ions such as copper. The plant polyphenol resveratrol confers resistance to plants against fungal agents and has been implicated as a cancer chemopreventive agent. Of particular interest is the observation that resveratrol has been found to induce apoptosis in cancer cell lines but not in normal cells. Over the last few years, we have shown that resveratrol is capable of causing DNA breakage in cells such as human lymphocytes. Such cellular DNA breakage is inhibited by copper specific chelators but not by iron and zinc chelating agents. Similar results are obtained by using permeabilized cells or with isolated nuclei, indicating that chromatin-bound copper is mobilized in this reaction. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and resveratrol to generate reactive oxygen species responsible for DNA cleavage. The results are in support of our hypothesis that anti-cancer mechanism of plant polyphenols involves mobilization of endogenous copper and the consequent pro-oxidant action. Such a mechanism better explains the anti-cancer effects of resveratrol, as it accounts for the preferential cytotoxicity towards cancer cells.
Journal of Molecular Biology | 1979
S. M. Hadi; Brigitte Bächi; John C.W. Shepherd; Robert Yuan; Kurt Ineichen; Thomas A. Bickle
Abstract Eco P15 is a restriction-modification enzyme coded by the P15 plasmid of Escherichia coli . We have determined the sites recognized by this enzyme on pBR322 and simian virus 40 DNA. The enzyme recognizes the sequence: In restriction, the enzyme cleaves the DNA 25 to 26 base-pairs 3′ to this sequence to leave single-stranded 5′ protrusions two bases long.