Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hasmik Agadjanian is active.

Publication


Featured researches published by Hasmik Agadjanian.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Tumor detection and elimination by a targeted gallium corrole

Hasmik Agadjanian; Jun Ma; Altan Rentsendorj; Vinod Valluripalli; Jae Youn Hwang; Atif Mahammed; Daniel L. Farkas; Harry B. Gray; Zeev Gross; Lali K. Medina-Kauwe

Sulfonated gallium(III) corroles are intensely fluorescent macrocyclic compounds that spontaneously assemble with carrier proteins to undergo cell entry. We report in vivo imaging and therapeutic efficacy of a tumor-targeted corrole noncovalently assembled with a heregulin-modified protein directed at the human epidermal growth factor receptor (HER). Systemic delivery of this protein-corrole complex results in tumor accumulation, which can be visualized in vivo owing to intensely red corrole fluorescence. Targeted delivery in vivo leads to tumor cell death while normal tissue is spared. These findings contrast with the effects of doxorubicin, which can elicit cardiac damage during therapy and required direct intratumoral injection to yield similar levels of tumor shrinkage compared with the systemically delivered corrole. The targeted complex ablated tumors at >5 times a lower dose than untargeted systemic doxorubicin, and the corrole did not damage heart tissue. Complexes remained intact in serum and the carrier protein elicited no detectable immunogenicity. The sulfonated gallium(III) corrole functions both for tumor detection and intervention with safety and targeting advantages over standard chemotherapeutic agents.


Pharmaceutical Research | 2006

Specific Delivery of Corroles to Cells via Noncovalent Conjugates with Viral Proteins

Hasmik Agadjanian; Jeremy J. Weaver; Atif Mahammed; Altan Rentsendorj; Sam Bass; Jihee Kim; Ivan J. Dmochowski; Ruth Margalit; Harry B. Gray; Zeev Gross; Lali K. Medina-Kauwe

PurposeCorroles are amphiphilic macrocycles that can bind and transport metal ions, and thus may be toxic to cells. We predicted that anionic corroles would poorly enter cells due to the negatively charged cell membrane, but could be ideal tumor-targeted drugs if appropriate carriers enabled delivery into tumor cells. In this work, we test the hypothesis that recombinant cell penetrating proteins of the adenovirus (Ad) capsid form noncovalent conjugates with corroles to facilitate target-specific delivery and cell death.MethodsCorroles mixed with recombinant proteins were tested for conjugate assembly, cell penetration, stability, targeted binding, and cell killing in vitro.ResultsSulfonated corroles entered cells only with carrier proteins, and formed stable complexes with recombinant Ad capsid proteins. ErbB receptor-targeted conjugates were cytotoxic to ErbB2-positive but not ErbB2-negative breast cancer cells, whereas molar equivalents of free corrole had no effect on these cells.ConclusionsSulfonated corroles are cytotoxic to ErbB2-positive breast cancer cells when delivered by a targeted cell penetrating protein. The relatively low dose required to accomplish this compared to untargeted compounds suggests that corroles may lend themselves to targeted therapy. Importantly, the amphiphilicity of corroles enables a unique approach to bioconjugate formation whereby the carrier and drug form a stable complex by noncovalent assembly.


Journal of Virology | 2006

Regulatable Gutless Adenovirus Vectors Sustain Inducible Transgene Expression in the Brain in the Presence of an Immune Response against Adenoviruses

Weidong Xiong; Shyam Goverdhana; Sandra Sciascia; Marianela Candolfi; Jeffrey M. Zirger; Carlos Barcia; James F. Curtin; Gwendalyn D. King; Gabriela Jaita; Chunyan Liu; Kurt M. Kroeger; Hasmik Agadjanian; Lali K. Medina-Kauwe; Donna Palmer; Philip Ng; Pedro R. Lowenstein; Maria G. Castro

ABSTRACT In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding β-galactosidase (β-gal) driven by a TetOn system containing the rtTASsM2 transactivator and the tTSKid repressor under the control of the murine cytomegalovirus (mCMV) (HC-Ad-mTetON-β-Gal) or the human CMV (hCMV) promoter (HC-Ad-hTetON-β-Gal). Expression was tightly regulatable by doxycycline (Dox), reaching maximum expression in vivo at 6 days and returning to basal levels at 10 days following the addition or removal of Dox, respectively. Both vectors achieved higher transgene expression levels compared to the expression from vectors encoding the constitutive mCMV or hCMV promoter. HC-Ad-mTetON-β-Gal yielded the highest transgene expression levels and expressed in both neurons and astrocytes. Antivector immune responses continue to limit the clinical use of vectors. We thus tested the inducibility and longevity of HC-Ad-mediated transgene expression in the brain of rats immunized against adenovirus by prior intradermal injections of RAds. Regulated transgene expression from HC-Ad-mTetON-β-Gal remained active even in the presence of a significant systemic immune response. Therefore, these vectors display two coveted characteristics of clinically useful vectors, namely their regulation and effectiveness even in the presence of prior immunization against adenovirus.


Molecular Pharmaceutics | 2011

A Mechanistic Study of Tumor-Targeted Corrole Toxicity

Jae Youn Hwang; Jay Lubow; David Chu; Jun Ma; Hasmik Agadjanian; Jessica Sims; Harry B. Gray; Zeev Gross; Daniel L. Farkas; Lali K. Medina-Kauwe

HerGa is a self-assembled tumor-targeted particle that bears both tumor detection and elimination activities in a single, two-component complex (Agadjanian et al. Proc. Natl. Acad. Sci. U.S.A.2009, 106, 6105-6110). Given its multifunctionality, HerGa (composed of the fluorescent cytotoxic corrole macrocycle, S2Ga, noncovalently bound to the tumor-targeted cell penetration protein, HerPBK10) has the potential for high clinical impact, but its mechanism of cell killing remains to be elucidated, and hence is the focus of the present study. Here we show that HerGa requires HerPBK10-mediated cell entry to induce toxicity. HerGa (but not HerPBK10 or S2Ga alone) induced mitochondrial membrane potential disruption and superoxide elevation, which were both prevented by endosomolytic-deficient mutants, indicating that cytosolic exposure is necessary for corrole-mediated cell death. A novel property discovered here is that corrole fluorescence lifetime acts as a pH indicator, broadcasting the intracellular microenvironmental pH during uptake in live cells. This feature in combination with two-photon imaging shows that HerGa undergoes early endosome escape during uptake, avoiding compartments of pH < 6.5. Cytoskeletal disruption accompanied HerGa-mediated mitochondrial changes whereas oxygen scavenging reduced both events. Paclitaxel treatment indicated that HerGa uptake requires dynamic microtubules. Unexpectedly, low pH is insufficient to induce release of the corrole from HerPBK10. Altogether, these studies identify a mechanistic pathway in which early endosomal escape enables HerGa-induced superoxide generation leading to cytoskeletal and mitochondrial damage, thus triggering downstream cell death.


Gene Therapy | 2006

Typical and atypical trafficking pathways of Ad5 penton base recombinant protein: implications for gene transfer.

Altan Rentsendorj; Jiansong Xie; MacVeigh M; Hasmik Agadjanian; Bass S; Kim Dh; Rossi J; Sarah F. Hamm-Alvarez; Lali K. Medina-Kauwe

The adenovirus (Ad) penton base protein facilitates viral infection by binding cell surface integrins, triggering receptor-mediated endocytosis and mediating endosomal penetration. Given these multiple functions, recombinant penton base proteins have been utilized as non-viral vehicles for gene transfer by our lab and others. Although we have previously demonstrated that penton base-derived vectors undergo integrin-specific binding and cell entry, less than desirable levels of gene expression have led us to re-evaluate the recombinant penton base as an agent for gene delivery. To do so, we have examined here the intracellular trafficking of an Ad serotype 5 (Ad5) recombinant penton base protein (PB). Here, we not only observed that PB utilizes a similar, typical trafficking pathway of whole Ad, but also found that PB entered HeLa cells through pathways not yet identified as contributing to cell entry by the whole virus. We show by high-resolution confocal microscopy and biochemical methods that binding to αv-integrins is a requirement for cell entry, but that early internalization stages did not substantially pass through clathrin-positive and early endosomal compartments. Moreover, a subpopulation of internalized protein localized with caveolin-positive compartments and Golgi markers, suggesting that a certain percentage of proteins pass through non-clathrin-mediated pathways. Similar to the virus, trafficking toward the nucleus was affected by disruption of microtubules and dynein. The majority of penton base molecules avoided the lysosome while facilitating early vesicle release of low molecular weight dextran molecules. In further support of a vesicle escape capacity, a subpopulation of internalized penton base appeared to enter the nucleus, as observed by high-resolution confocal microscopy and cell fractionation. As a confirmation of these findings, we demonstrate that a recombinant penton base facilitated cytosolic entry of an siRNA molecule as observed by RNA interference of a marker gene. Based on our findings here, we suggest that whereas soluble penton base proteins may enter cells through clathrin- and non-clathrin-mediated pathways, vesicle escape and nuclear delivery appear to be supported by a clathrin-mediated pathway. As our previous efforts have focused on utilizing recombinant penton base proteins as delivery agents for therapeutics, these findings allow us to evaluate the use of the penton base as a cell entry and intracellular trafficking agent, and may be of interest concerning the development of vectors for efficient delivery of therapeutics to cells.


Journal of Inorganic Biochemistry | 2008

Corroles that bind with high affinity to both apo and holo transferrin.

Adi Haber; Hasmik Agadjanian; Lali K. Medina-Kauwe; Zeev Gross

The interactions of transferrin (Tf) with the water soluble corrole 1 and with its gallium (1-Ga) and manganese (1-Mn) complexes were studied to establish the possible utilization of corrole-transferrin conjugates for targeting these corroles to cells that express the transferrin receptor. The protein, in both its iron-free apo form (apoTf) and the iron-bound holo form (holoTf), was found to spontaneously bind all three derivatives. This conclusion was reached from titrations followed by several spectroscopic methods and dilution experiments measured by fluorescence. The such elucidated very small dissociation constant of 2 x 10(-7) M and 3 x 10(-8) M for 1-Ga with apoTf and holoTf, respectively and <10(-9) M for 1 with both protein forms are clearly relevant for the physiological concentration of transferrin in serum.


Cancer | 2012

Xeroderma pigmentosum complementation group C single-nucleotide polymorphisms in the nucleotide excision repair pathway correlate with prolonged progression-free survival in advanced ovarian cancer.

Nicole D. Fleming; Hasmik Agadjanian; H. Nassanian; Carl W. Miller; Sandra Orsulic; Beth Y. Karlan; C. Walsh

The nucleotide excision repair (NER) pathway is the principal DNA repair pathway for removing bulky platinum DNA adducts. Suboptimal DNA repair may lead to improved response to platinum agents. The objective of this study was to determine whether single‐nucleotide polymorphisms (SNPs) in NER pathway genes could be markers of platinum response in ovarian cancer.


Gynecologic Oncology | 2015

Suboptimal cytoreduction in ovarian carcinoma is associated with molecular pathways characteristic of increased stromal activation

Zhenqiu Liu; Jessica A. Beach; Hasmik Agadjanian; Dongyu Jia; Paul-Joseph Aspuria; Beth Y. Karlan; Sandra Orsulic

OBJECTIVE Suboptimal cytoreductive surgery in advanced epithelial ovarian cancer (EOC) is associated with poor survival but it is unknown if poor outcome is due to the intrinsic biology of unresectable tumors or insufficient surgical effort resulting in residual tumor-sustaining clones. Our objective was to identify the potential molecular pathway(s) and cell type(s) that may be responsible for suboptimal surgical resection. METHODS By comparing gene expression in optimally and suboptimally cytoreduced patients, we identified a gene network associated with suboptimal cytoreduction and explored the biological processes and cell types associated with this gene network. RESULTS We show that primary tumors from suboptimally cytoreduced patients express molecular signatures that are typically present in a distinct molecular subtype of EOC characterized by increased stromal activation and lymphovascular invasion. Similar molecular pathways are present in EOC metastases, suggesting that primary tumors in suboptimally cytoreduced patients are biologically similar to metastatic tumors. We demonstrate that the suboptimal cytoreduction network genes are enriched in reactive tumor stroma cells rather than malignant tumor cells. CONCLUSION Our data suggest that the success of cytoreductive surgery is dictated by tumor biology, such as extensive stromal reaction and increased invasiveness, which may hinder surgical resection and ultimately lead to poor survival.


Oncotarget | 2016

Sphingosine kinase 1 is required for TGF-β mediated fibroblastto- myofibroblast differentiation in ovarian cancer.

Jessica A. Beach; Paul-Joseph Aspuria; Dong-Joo Cheon; Kate Lawrenson; Hasmik Agadjanian; C. Walsh; Beth Y. Karlan; Sandra Orsulic

Sphingosine kinase 1 (SPHK1), the enzyme that produces sphingosine 1 phosphate (S1P), is known to be highly expressed in many cancers. However, the role of SPHK1 in cells of the tumor stroma remains unclear. Here, we show that SPHK1 is highly expressed in the tumor stroma of high-grade serous ovarian cancer (HGSC), and is required for the differentiation and tumor promoting function of cancer-associated fibroblasts (CAFs). Knockout or pharmacological inhibition of SPHK1 in ovarian fibroblasts attenuated TGF-β-induced expression of CAF markers, and reduced their ability to promote ovarian cancer cell migration and invasion in a coculture system. Mechanistically, we determined that SPHK1 mediates TGF-β signaling via the transactivation of S1P receptors (S1PR2 and S1PR3), leading to p38 MAPK phosphorylation. The importance of stromal SPHK1 in tumorigenesis was confirmed in vivo, by demonstrating a significant reduction of tumor growth and metastasis in SPHK1 knockout mice. Collectively, these findings demonstrate the potential of SPHK1 inhibition as a novel stroma-targeted therapy in HGSC.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Chemotherapy targeting by DNA capture in viral protein particles

Hasmik Agadjanian; David Chu; Jae Youn Hwang; Sebastian Wachsmann-Hogiu; Altan Rentsendorj; Lei Song; Vinod Valluripalli; Jay Lubow; Jun Ma; Behrooz G. Sharifi; Daniel L. Farkas; Lali K. Medina-Kauwe

AIM This study tests the hypothesis that DNA intercalation and electrophilic interactions can be exploited to noncovalently assemble doxorubicin in a viral protein nanoparticle designed to target and penetrate tumor cells through ligand-directed delivery. We further test whether this new paradigm of doxorubicin targeting shows therapeutic efficacy and safety in vitro and in vivo. MATERIALS & METHODS We tested serum stability, tumor targeting and therapeutic efficacy in vitro and in vivo using biochemical, microscopy and cytotoxicity assays. RESULTS Self-assembly formed approximately 10-nm diameter serum-stable nanoparticles that can target and ablate HER2+ tumors at >10× lower dose compared with untargeted doxorubicin, while sparing the heart after intravenous delivery. The targeted nanoparticle tested here allows doxorubicin potency to remain unaltered during assembly, transport and release into target cells,while avoiding peripheral tissue damage and enabling lower, and thus safer, drug dose for tumor killing. CONCLUSION This nanoparticle may be an improved alternative to chemical conjugates and signal-blocking antibodies for tumor-targeted treatment.

Collaboration


Dive into the Hasmik Agadjanian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Y. Karlan

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sandra Orsulic

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Altan Rentsendorj

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

C. Walsh

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jae Youn Hwang

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Carl W. Miller

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Daniel L. Farkas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zeev Gross

Technion – Israel Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge