Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lali K. Medina-Kauwe is active.

Publication


Featured researches published by Lali K. Medina-Kauwe.


Gene Therapy | 2005

Intracellular trafficking of nonviral vectors

Lali K. Medina-Kauwe; Jiansong Xie; Sarah F. Hamm-Alvarez

Nonviral vectors continue to be attractive alternatives to viruses due to their low toxicity and immunogenicity, lack of pathogenicity, and ease of pharmacologic production. However, nonviral vectors also continue to suffer from relatively low levels of gene transfer compared to viruses, thus the drive to improve these vectors continues. Many studies on vector–cell interactions have reported that nonviral vectors bind and enter cells efficiently, but yield low gene expression, thus directing our attention to the intracellular trafficking of these vectors to understand where the obstacles occur. Here, we will review nonviral vector trafficking pathways, which will be considered here as the steps from cell binding to nuclear delivery. Studies on the intracellular trafficking of nonviral vectors has given us valuable insights into the barriers these vectors must overcome to mediate efficient gene transfer. Importantly, we will highlight the different approaches used by researchers to overcome certain trafficking barriers to gene transfer, many of which incorporate components from biological systems that have naturally evolved the capacity to overcome such obstacles. The tools used to study trafficking pathways will also be discussed.


Comparative Biochemistry and Physiology Part A: Physiology | 1995

GAMMA-AMINOBUTYRIC ACID (GABA) METABOLISM IN MAMMALIAN NEURAL AND NONNEURAL TISSUES

Niranjala J.K. Tillakaratne; Lali K. Medina-Kauwe; K. Michael Gibson

4-Aminobutyric acid (GABA), a major inhibitory neurotransmitter of mammalian central nervous system, is found in a wide range of organisms, from prokaryotes to vertebrates. GABA is widely distributed in nonneural tissue including peripheral nervous and endocrine systems. GABA acts on GABAA and GABAB receptors. GABAA receptors are ligand-gated chloride channels modulated by a variety of drugs. GABAB receptors are essentially presynaptic, usually coupled to potassium or calcium channels, and they function via a GTP binding protein. In neural and nonneural tissues, GABA is metabolized by three enzymes--glutamic acid decarboxylase (GAD), which produces GABA from glutamic acid, and the catabolic enzymes GABA-transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Production of succinic acid by SSADH allows entry of the GABA carbon skeleton into the tricarboxylic acid cycle. Alternate sources of GABA include putrescine, spermine, spermidine and ornithine, which produce GABA via deamination and decarboxylation reactions, while L-glutamine is an additional source of glutamic acid via deamination. GAD from mammalian brain occurs in two molecular forms, GAD65 and GAD67 (referring to subunit relative molecular weight (Mr) in kilodaltons). These different forms of GAD are the product of different genes, differing in nucleotide sequence, immunoreactivity and subcellular localization. The presence and characteristics of GAD have been investigated in a wide variety of nonneural tissues including liver, kidney, pancreas, testis, ova, oviduct, adrenal, sympathetic ganglia, gastrointestinal tract and circulating erythrocytes. In some tissues, one form (GAD65 or GAD67) predominates. GABA-T has been located in most of the same tissues, primarily through histochemical and/or immunochemical methods; GABA-T is also present in a variety of circulating cells, including platelets and lymphocytes. SSADH, the final enzyme GABA catabolism, has been detected in some of the tissues in which GAD and GABA-T have been identified, although the presence of this enzyme has not been in mammalian pancreas, ova, oviduct, testis or sympathetic ganglia.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Tumor detection and elimination by a targeted gallium corrole

Hasmik Agadjanian; Jun Ma; Altan Rentsendorj; Vinod Valluripalli; Jae Youn Hwang; Atif Mahammed; Daniel L. Farkas; Harry B. Gray; Zeev Gross; Lali K. Medina-Kauwe

Sulfonated gallium(III) corroles are intensely fluorescent macrocyclic compounds that spontaneously assemble with carrier proteins to undergo cell entry. We report in vivo imaging and therapeutic efficacy of a tumor-targeted corrole noncovalently assembled with a heregulin-modified protein directed at the human epidermal growth factor receptor (HER). Systemic delivery of this protein-corrole complex results in tumor accumulation, which can be visualized in vivo owing to intensely red corrole fluorescence. Targeted delivery in vivo leads to tumor cell death while normal tissue is spared. These findings contrast with the effects of doxorubicin, which can elicit cardiac damage during therapy and required direct intratumoral injection to yield similar levels of tumor shrinkage compared with the systemically delivered corrole. The targeted complex ablated tumors at >5 times a lower dose than untargeted systemic doxorubicin, and the corrole did not damage heart tissue. Complexes remained intact in serum and the carrier protein elicited no detectable immunogenicity. The sulfonated gallium(III) corrole functions both for tumor detection and intervention with safety and targeting advantages over standard chemotherapeutic agents.


Pharmaceutical Research | 2006

Specific Delivery of Corroles to Cells via Noncovalent Conjugates with Viral Proteins

Hasmik Agadjanian; Jeremy J. Weaver; Atif Mahammed; Altan Rentsendorj; Sam Bass; Jihee Kim; Ivan J. Dmochowski; Ruth Margalit; Harry B. Gray; Zeev Gross; Lali K. Medina-Kauwe

PurposeCorroles are amphiphilic macrocycles that can bind and transport metal ions, and thus may be toxic to cells. We predicted that anionic corroles would poorly enter cells due to the negatively charged cell membrane, but could be ideal tumor-targeted drugs if appropriate carriers enabled delivery into tumor cells. In this work, we test the hypothesis that recombinant cell penetrating proteins of the adenovirus (Ad) capsid form noncovalent conjugates with corroles to facilitate target-specific delivery and cell death.MethodsCorroles mixed with recombinant proteins were tested for conjugate assembly, cell penetration, stability, targeted binding, and cell killing in vitro.ResultsSulfonated corroles entered cells only with carrier proteins, and formed stable complexes with recombinant Ad capsid proteins. ErbB receptor-targeted conjugates were cytotoxic to ErbB2-positive but not ErbB2-negative breast cancer cells, whereas molar equivalents of free corrole had no effect on these cells.ConclusionsSulfonated corroles are cytotoxic to ErbB2-positive breast cancer cells when delivered by a targeted cell penetrating protein. The relatively low dose required to accomplish this compared to untargeted compounds suggests that corroles may lend themselves to targeted therapy. Importantly, the amphiphilicity of corroles enables a unique approach to bioconjugate formation whereby the carrier and drug form a stable complex by noncovalent assembly.


Journal of Virology | 2006

Regulatable Gutless Adenovirus Vectors Sustain Inducible Transgene Expression in the Brain in the Presence of an Immune Response against Adenoviruses

Weidong Xiong; Shyam Goverdhana; Sandra Sciascia; Marianela Candolfi; Jeffrey M. Zirger; Carlos Barcia; James F. Curtin; Gwendalyn D. King; Gabriela Jaita; Chunyan Liu; Kurt M. Kroeger; Hasmik Agadjanian; Lali K. Medina-Kauwe; Donna Palmer; Philip Ng; Pedro R. Lowenstein; Maria G. Castro

ABSTRACT In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding β-galactosidase (β-gal) driven by a TetOn system containing the rtTASsM2 transactivator and the tTSKid repressor under the control of the murine cytomegalovirus (mCMV) (HC-Ad-mTetON-β-Gal) or the human CMV (hCMV) promoter (HC-Ad-hTetON-β-Gal). Expression was tightly regulatable by doxycycline (Dox), reaching maximum expression in vivo at 6 days and returning to basal levels at 10 days following the addition or removal of Dox, respectively. Both vectors achieved higher transgene expression levels compared to the expression from vectors encoding the constitutive mCMV or hCMV promoter. HC-Ad-mTetON-β-Gal yielded the highest transgene expression levels and expressed in both neurons and astrocytes. Antivector immune responses continue to limit the clinical use of vectors. We thus tested the inducibility and longevity of HC-Ad-mediated transgene expression in the brain of rats immunized against adenovirus by prior intradermal injections of RAds. Regulated transgene expression from HC-Ad-mTetON-β-Gal remained active even in the presence of a significant systemic immune response. Therefore, these vectors display two coveted characteristics of clinically useful vectors, namely their regulation and effectiveness even in the presence of prior immunization against adenovirus.


Gene Therapy | 2001

Nonviral gene delivery to human breast cancer cells by targeted Ad5 penton proteins

Lali K. Medina-Kauwe; M Maguire; Nori Kasahara; Larry Kedes

The capsid proteins of adenovirus serotype 5 (Ad5) are key to the virus’ highly efficient cell binding and entry mechanism. In particular, the penton base plays a significant role in both viral internalization and endosome penetration. We have produced an adenovirus penton fusion protein (HerPBK10) containing moieties for DNA transport and targeted delivery to breast cancer cells. HerPBK10 binds DNA through a polylysine appendage, while the EGF-like domain of the heregulin-α1 isoform is used as the targeting ligand. This ligand binds with high affinity to HER2/3 or HER2/4 heterodimers, which are overexpressed on certain aggressive breast cancers. In addition, this ligand is rapidly internalized after binding, thus adding to the utility of heregulin for targeting. HerPBK10 binds MDA-MB-453 breast cancer cells in a receptor-specific manner, and mediates the entry of a reporter plasmid in MDA-MB-453 cells in culture. Delivery can be competed by excess heregulin peptide, thus confirming receptor specificity. Importantly, the penton segment appears to contribute significantly to enhanced delivery. Complexes containing HerPBK10 and DNA have been optimized to provide targeted gene delivery to breast cancer cells in vitro. We demonstrate that delivery can be accomplished in the presence of serum, thus suggesting a potential use for in vivo delivery.


Advanced Drug Delivery Reviews | 2007

“Alternative” endocytic mechanisms exploited by pathogens: New avenues for therapeutic delivery?☆

Lali K. Medina-Kauwe

Abstract Some pathogens utilize unique routes to enter cells that may evade the intracellular barriers encountered by the typical clathrin-mediated endocytic pathway. Retrograde transport and caveolar uptake are among the better characterized pathways, as alternatives to clathrin-mediated endocytosis, that are known to facilitate entry of pathogens and potential delivery agents. Recent characterization of the trafficking mechanisms of prion proteins and certain bacteria may present new paradigms for strategizing improvements in therapeutic spread and retention of therapy. This review will provide an overview of such endocytic pathways, and discuss current and future possibilities in using these routes as a means to improve therapeutic delivery.


Molecular Pharmaceutics | 2011

A Mechanistic Study of Tumor-Targeted Corrole Toxicity

Jae Youn Hwang; Jay Lubow; David Chu; Jun Ma; Hasmik Agadjanian; Jessica Sims; Harry B. Gray; Zeev Gross; Daniel L. Farkas; Lali K. Medina-Kauwe

HerGa is a self-assembled tumor-targeted particle that bears both tumor detection and elimination activities in a single, two-component complex (Agadjanian et al. Proc. Natl. Acad. Sci. U.S.A.2009, 106, 6105-6110). Given its multifunctionality, HerGa (composed of the fluorescent cytotoxic corrole macrocycle, S2Ga, noncovalently bound to the tumor-targeted cell penetration protein, HerPBK10) has the potential for high clinical impact, but its mechanism of cell killing remains to be elucidated, and hence is the focus of the present study. Here we show that HerGa requires HerPBK10-mediated cell entry to induce toxicity. HerGa (but not HerPBK10 or S2Ga alone) induced mitochondrial membrane potential disruption and superoxide elevation, which were both prevented by endosomolytic-deficient mutants, indicating that cytosolic exposure is necessary for corrole-mediated cell death. A novel property discovered here is that corrole fluorescence lifetime acts as a pH indicator, broadcasting the intracellular microenvironmental pH during uptake in live cells. This feature in combination with two-photon imaging shows that HerGa undergoes early endosome escape during uptake, avoiding compartments of pH < 6.5. Cytoskeletal disruption accompanied HerGa-mediated mitochondrial changes whereas oxygen scavenging reduced both events. Paclitaxel treatment indicated that HerGa uptake requires dynamic microtubules. Unexpectedly, low pH is insufficient to induce release of the corrole from HerPBK10. Altogether, these studies identify a mechanistic pathway in which early endosomal escape enables HerGa-induced superoxide generation leading to cytoskeletal and mitochondrial damage, thus triggering downstream cell death.


Journal of Controlled Release | 2012

Photoexcitation of tumor-targeted corroles induces singlet oxygen-mediated augmentation of cytotoxicity.

Jae Youn Hwang; David J. Lubow; David Chu; Jessica Sims; Felix Alonso-Valenteen; Harry B. Gray; Zeev Gross; Daniel L. Farkas; Lali K. Medina-Kauwe

The tumor-targeted corrole particle, HerGa, displays preferential toxicity to tumors in vivo and can be tracked via fluorescence for simultaneous detection, imaging, and treatment. We have recently uncovered an additional feature of HerGa in that its cytotoxicity is enhanced by light irradiation. In the present study, we have elucidated the cellular mechanisms for HerGa photoexcitation-mediated cell damage using fluorescence optical imaging. In particular, we found that light irradiation of HerGa produces singlet oxygen, causing mitochondrial damage and cytochrome c release, thus promoting apoptotic cell death. An understanding of the mechanisms of cell death induced by HerGa, particularly under conditions of light-mediated excitation, may direct future efforts in further customizing this nanoparticle for additional therapeutic applications and enhanced potency.


Gene Therapy | 2001

3PO, a novel nonviral gene delivery system using engineered Ad5 penton proteins

Lali K. Medina-Kauwe; Nori Kasahara; Larry Kedes

This study describes the development of 3PO, a nonviral, protein-based gene delivery vector which utilizes the highly evolved cell-binding, cell-entry and intracellular transport functions of the adenovirus serotype 5 (Ad5) capsid penton protein. A penton fusion protein containing a polylysine sequence was produced by recombinant methods and tested for gene delivery capability. As the protein itself is known to bind integrins through a conserved consensus motif, the penton inherently possesses the ability to bind and enter cells through receptor-mediated internalization. The ability to lyse the cellular endosome encapsulating internalized receptors is also attributed to the penton. The recombinant protein gains the additional function of DNA binding and transport with the appendage of a polylysine motif. This protein retains the ability to form pentamers and mediates delivery of a reporter gene to cultured cells. Interference by oligopeptides bearing the integrin binding motif suggests that delivery is mediated specifically through integrin receptor binding and internalization. The addition of protamine to penton–DNA complexes allows gene delivery in the presence of serum.

Collaboration


Dive into the Lali K. Medina-Kauwe's collaboration.

Top Co-Authors

Avatar

Jae Youn Hwang

Daegu Gyeongbuk Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zeev Gross

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Harry B. Gray

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hasmik Agadjanian

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Daniel L. Farkas

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jessica Sims

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Altan Rentsendorj

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chris Hanson

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaojiang Cui

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge