Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hassan Albadawi is active.

Publication


Featured researches published by Hassan Albadawi.


Journal of Surgical Research | 2004

A noninvasive murine model of hind limb ischemia-reperfusion injury.

James A. Bonheur; Hassan Albadawi; George M. Patton; Michael T. Watkins

BACKGROUND This study describes a novel murine method of the Controlled Tension Tourniquet (CTT). The CTT applies a measured circumferential tension to hind limbs using a tourniquet attached to digital strain gauges, and is useful for investigating hind limb ischemia reperfusion (IR). MATERIALS AND METHODS Mice were subjected to 1, 3, or 6 h of unilateral hind limb ischemia followed by either 4 or 24 h of reperfusion. Blood flow in the ischemic, reperfused, and contralateral limbs was monitored using a Laser Doppler Imager. Edema in the IR limbs was documented by changes in the wet weight to dry weight ratio. Myeloperoxidase and tetrazolium based mitochondrial activity assays indicated neutrophil infiltration and tissue viability, respectively. RESULTS During reperfusion following 1, 4, or 6 h, flow stabilized at 100%, 53%, and 23% of baseline levels, respectively. Edema was present all in IR limbs after 4 h of reperfusion, but increased with the duration of ischemia. After 24 h of reperfusion neutrophil infiltration was equivalent in all IR limbs after all intervals of ischemia. After 24 h of reperfusion, tissue viability after 1 h of ischemia was equivalent to sham or contralateral limbs. At 3 or 6 h of ischemia and 24 h reperfusion decreased tissue viability to 40% of sham and contralateral limbs. CONCLUSIONS The CTT provides a reproducible, noninvasive model of acute limb ischemia, which reflects the biochemical indices of microvascular injury, inflammation and flow characteristic of reperfusion injury.


European Journal of Pharmacology | 2011

Tourniquet-induced acute ischemia-reperfusion injury in mouse skeletal muscles: Involvement of superoxide

T.P. Tran; Huiyin Tu; Iraklis I. Pipinos; Robert L. Muelleman; Hassan Albadawi; Yu Long Li

Although arterial limb tourniquet is one of the first-line treatments to prevent exsanguinating hemorrhage in both civilian pre-hospital and battlefield casualty care, prolonged application of a limb tourniquet can lead to serious ischemia-reperfusion injury. However, the underlying pathomechanisms of tourniquet-induced ischemia-reperfusion injury are still poorly understood. Using a murine model of acute limb ischemia-reperfusion, we investigated if acute limb ischemia-reperfusion injury is mediated by superoxide overproduction and mitochondrial dysfunction. Hind limbs of C57/BL6 mice were subjected to 3h ischemia and 4h reperfusion via placement and release of a rubber tourniquet at the greater trochanter. Approximately 40% of the gastrocnemius muscle suffered infarction in this model. Activities of mitochondrial electron transport chain complexes including complex I, II, III, and IV in the gastrocnemius muscle were decreased in the ischemia-reperfusion group compared to sham. Superoxide production was increased while activity of manganese superoxide dismutase (MnSOD, the mitochondria-targeted SOD isoform) was decreased in the ischemia-reperfusion group compared to the sham group. Pretreatment with tempol (a SOD mimetic, 50mg/kg) or co-enzyme Q(10) (50mg/kg) not only decreased the superoxide production, but also reduced the infarct size and normalized mitochondrial dysfunction in the gastrocnemius muscle. Our results suggest that tourniquet-induced skeletal muscle ischemia-reperfusion injuries including infarct size and mitochondrial dysfunction may be mediated via superoxide overproduction and reduced antioxidant activity. In the future, this murine ischemia-reperfusion model can be adapted to mechanistically evaluate anti-ischemic molecules in tourniquet-induced skeletal muscle injury.


Annals of Surgery | 2010

Liver-assist device with a microfluidics-based vascular bed in an animal model.

Wen-Ming Hsu; Amedeo Carraro; Katherine M. Kulig; Mark L. Miller; Mohammad R. Kaazempur-Mofrad; Eli J. Weinberg; Fateh Entabi; Hassan Albadawi; Michael T. Watkins; Jeffrey T. Borenstein; Joseph P. Vacanti; Craig M. Neville

Objective:This study evaluates a novel liver-assist device platform with a microfluidics-modeled vascular network in a femoral arteriovenous shunt in rats. Summary of Background Data:Liver-assist devices in clinical trials that use pumps to force separated plasma through packed beds of parenchymal cells exhibited significant necrosis with a negative impact on function. Methods:Microelectromechanical systems technology was used to design and fabricate a liver-assist device with a vascular network that supports a hepatic parenchymal compartment through a nanoporous membrane. Sixteen devices with rat primary hepatocytes and 12 with human HepG2/C3A cells were tested in athymic rats in a femoral arteriovenous shunt model. Several parenchymal tube configurations were evaluated for pressure profile and cell survival. The blood flow pattern and perfusion status of the devices was examined by laser Doppler scanning. Cell viability and serum protein secretion functions were assessed. Results:Femoral arteriovenous shunt was successfully established in all animals. Blood flow was homogeneous through the vascular bed and replicated native flow patterns. Survival of seeded liver cells was highly dependent on parenchymal chamber pressures. The tube configuration that generated the lowest pressure supported excellent cell survival and function. Conclusions:This device is the first to incorporate a microfluidics network in the systemic circulatory system. The microvascular network supported viability and function of liver cells in a short-term ex vivo model. Parenchymal chamber pressure generated in an arteriovenous shunt model is a critical parameter that affects viability and must be considered in future designs. The microfluidics-based vascular network is a promising platform for generating a large-scale medical device capable of augmenting liver function in a clinical setting.


TECHNOLOGY | 2013

Non-thermal, pulsed electric field cell ablation: A novel tool for regenerative medicine and scarless skin regeneration

Alexander Golberg; G. Felix Broelsch; Stefan Bohr; Martin C. Mihm; William G. Austen; Hassan Albadawi; Michael T. Watkins; Martin L. Yarmush

High voltage, short pulsed electric fields (PEF) is a non-thermal ablation method, in which defined PEF irreversibly destabilize cell membranes, while preserving other tissue components such as the extracellular matrix (ECM). In the present report, we show that PEF ablated rat skin retains its microvascular blood supply and ECM structure. Complete regeneration of epidermis, hair follicles, sebaceous glands, and the panniculus carnosusis observed two months after the ablation. Our results clearly indicate that non-thermal PEF has the potential to be a powerful and novel tool for scarless tissue regeneration.


Journal of Vascular and Interventional Radiology | 2012

Pathogenesis of Varicose Veins

Rahmi Oklu; Roy Habito; Manuel Mayr; Amy R. Deipolyi; Hassan Albadawi; Robin Hesketh; T. Gregory Walker; Katy R. Linskey; Chandler A. Long; Stephan Wicky; Julianne Stoughton; Michael T. Watkins

Despite the high prevalence of varicose veins and the recent surge in research on the condition, the precise mechanisms underlying their development remain uncertain. In the past decade, there has been a shift from initial theories based on purely mechanical factors to hypotheses pointing to complex molecular changes causing histologic alterations in the vessel wall and extracellular matrix. Despite progress in understanding the molecular aspects of venous insufficiency, therapies for symptomatic varicose veins are directed toward anatomic and physical interventions. The present report reviews current evidence identifying the underlying biochemical alterations in the pathogenesis of varicose veins.


Journal of Vascular Surgery | 2013

Reduced hind limb ischemia-reperfusion injury in Toll-like receptor-4 mutant mice is associated with decreased neutrophil extracellular traps

Rahmi Oklu; Hassan Albadawi; John E. Jones; Hyung Jin Yoo; Michael T. Watkins

OBJECTIVE Ischemia-reperfusion (IR) injury is a significant problem in the management of patients with acute limb ischemia. Despite rapid restoration of blood flow after technically successful open and endovascular revascularization, complications secondary to IR injury continue to occur and limit clinical success. Our aim was to create a murine model of hind limb IR injury to examine the role of Toll-like receptor-4 (TLR4) and to determine whether inactive TLR4 led to a decrease in the detection of neutrophil extracellular traps (NETs), which are known to be highly thrombogenic and may mediate microvascular injury. METHODS A calibrated tension tourniquet was applied to unilateral hind limb of wild-type (WT) and TLR4 receptor mutant (TLR4m) mice for 1.5 hours to induce ischemia and then removed to initiate reperfusion. At the end of 48 hours of reperfusion, mice were euthanized and hind limb tissue and serum specimens were collected for analysis. Hematoxylin and eosin-stained sections of hind limb skeletal muscle tissue were examined for fiber injury. For immunohistochemistry, mouse monoclonal antihistone H2A/H2B/DNA complex antibody to detect NETs and rabbit polyclonal antimyeloperoxidase antibody were used to identify infiltrating cells containing myeloperoxidase. Muscle adenosine triphosphate levels, nuclear factor (NF)-κB activity, the α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, poly (adenosine diphosphate-ribose) polymerase activity, and inducible nitric oxide synthase expression were measured. Systemic levels of keratinocyte-derived chemokine, monocyte chemotactic protein-1, and vascular endothelial growth factor in the serum samples were also examined. RESULTS IR injury in the hind limb of WT mice demonstrated significant levels of muscle fiber injury, decreased energy substrates, increased NF-κB activation, decreased levels of α-subunit of inhibitor of NF-κB light polypeptide gene enhancer, increased inducible nitric oxide synthase expression, and increased poly (adenosine diphosphate-ribose) polymerase activity levels compared with the TLR4m samples. Additionally, there was marked decrease in the level of neutrophil and monocyte infiltration in the TLR4m mice, which corresponded to similar levels of decreased NET detection in the interstitial space and in microvascular thrombi. In situ nuclease treatment of WT tissue sections significantly diminished the level of NET immunostaining, demonstrating the specificity of the antibody to detect NETs and suggesting a potential role for nuclease treatment in IR injury. CONCLUSIONS These results suggest a pivotal role for TLR4 in mediating hind limb IR injury and suggest that NETs may contribute to muscle fiber injury.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Syndecan-4 Proteoliposomes Enhance Fibroblast Growth Factor-2 (FGF-2)-induced Proliferation, Migration, and Neovascularization of Ischemic Muscle

Eugene Jang; Hassan Albadawi; Michael T. Watkins; Elazer R. Edelman; Aaron B. Baker

Ischemia of the myocardium and lower limbs is a common consequence of arterial disease and a major source of morbidity and mortality in modernized countries. Inducing neovascularization for the treatment of ischemia is an appealing therapeutic strategy for patients for whom traditional treatment modalities cannot be performed or are ineffective. In the past, the stimulation of blood vessel growth was pursued using direct delivery of growth factors, angiogenic gene therapy, or cellular therapy. Although therapeutic angiogenesis holds great promise for treating patients with ischemia, current methods have not found success in clinical trials. Fibroblast growth factor-2 (FGF-2) was one of the first growth factors to be tested for use in therapeutic angiogenesis. Here, we present a method for improving the biological activity of FGF-2 by codelivering the growth factor with a liposomally embedded coreceptor, syndecan-4. This technique was shown to increase FGF-2 cellular signaling, uptake, and nuclear localization in comparison with FGF-2 alone. Delivery of syndecan-4 proteoliposomes also increased endothelial proliferation, migration, and angiogenic tube formation in response to FGF-2. Using an animal model of limb ischemia, syndecan-4 proteoliposomes markedly improved the neovascularization following femoral artery ligation and recovery of perfusion of the ischemic limb. Taken together, these results support liposomal delivery of syndecan-4 as an effective means to improving the potential of using growth factors to achieve therapeutic neovascularization of ischemic tissue.


Science Translational Medicine | 2016

An injectable shear-thinning biomaterial for endovascular embolization

Reginald K. Avery; Hassan Albadawi; Mohsen Akbari; Yu Shrike Zhang; Michael Duggan; Dushyant V. Sahani; Bradley D. Olsen; Ali Khademhosseini; Rahmi Oklu

An engineered shear-thinning biomaterial is used as an embolic agent for vascular occlusion as treatment for bleeding. Stopping blood in its tracks Effective treatments for ruptured blood vessels must be rapidly deployed to promote hemostasis. Avery et al. formulated a gelatin and silicate nanoplatelet hydrogel material that occluded blood flow without requiring thrombus formation. When injected into arteries and veins in mice and pigs, the biomaterial occluded blood flow without evidence of fragmentation or displacement for up to 24 days. Occluded vessels showed evidence of connective tissue replacing the biomaterial in the vessel lumen. Shear-thinning biomaterials represent promising alternatives for stable endovascular embolization. Improved endovascular embolization of vascular conditions can generate better patient outcomes and minimize the need for repeat procedures. However, many embolic materials, such as metallic coils or liquid embolic agents, are associated with limitations and complications such as breakthrough bleeding, coil migration, coil compaction, recanalization, adhesion of the catheter to the embolic agent, or toxicity. Here, we engineered a shear-thinning biomaterial (STB), a nanocomposite hydrogel containing gelatin and silicate nanoplatelets, to function as an embolic agent for endovascular embolization procedures. STBs are injectable through clinical catheters and needles and have hemostatic activity comparable to metallic coils, the current gold standard. In addition, STBs withstand physiological pressures without fragmentation or displacement in elastomeric channels in vitro and in explant vessels ex vivo. In vitro experiments also indicated that STB embolization did not rely on intrinsic thrombosis as coils did for occlusion, suggesting that the biomaterial may be suitable for use in patients on anticoagulation therapy or those with coagulopathy. Using computed tomography imaging, the biomaterial was shown to fully occlude murine and porcine vasculature in vivo and remain at the site of injection without fragmentation or nontarget embolization. Given the advantages of rapid delivery, in vivo stability, and independent occlusion that does not rely on intrinsic thrombosis, STBs offer an alternative gel-based embolic agent with translational potential for endovascular embolization.


Journal of Vascular and Interventional Radiology | 2012

Detection of Extracellular Genomic DNA Scaffold in Human Thrombus: Implications for the Use of Deoxyribonuclease Enzymes in Thrombolysis

Rahmi Oklu; Hassan Albadawi; Michael T. Watkins; Marc Monestier; Martin Sillesen; Stephan Wicky

PURPOSE Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight into thrombus remodeling. MATERIALS AND METHODS Ten human thrombus samples were collected during cases of thrombectomy and open surgical repair of abdominal aortic aneurysms (five samples < 3 d old and five samples > 1 y old). Additionally, an acute murine hindlimb ischemia model was created to evaluate thrombus samples in mice. Human sections were immunostained for the H2A/H2B/DNA complex, myeloperoxidase, fibrinogen, and von Willebrand factor. Mouse sections were immunostained with the H2A antibody. All samples were further evaluated after hematoxylin and eosin and Masson trichrome staining. RESULTS An extensive network of extracellular histone/DNA complex was demonstrated in the matrix of human ex vivo thrombus. This network is present throughout the highly cellular acute thrombus. However, in chronic thrombi, detection of the histone/DNA network was predominantly in regions of low collagen content and high cell density, which were mostly near the lumen. These regions of high cell density contained neutrophils and monocytes. Similarly, sections from the acute murine hindlimb ischemia model also exhibited extensive immunoreactivity to the histone antibody in the extracellular space within murine thrombi. CONCLUSIONS Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold.


Surgery | 2013

Fresh-frozen plasma resuscitation after traumatic brain injury and shock attenuates extracellular nucleosome levels and deoxyribonuclease 1 depletion

Martin Sillesen; Guang Jin; Rahmi Oklu; Hassan Albadawi; Ayesha M. Imam; Cecilie H. Jepsen; John O. Hwabejire; Sisse R. Ostrowski; Pär I. Johansson; Lars S. Rasmussen; Hasan B. Alam

INTRODUCTION Traumatic brain injury and shock are among the leading causes of trauma-related mortality. We have previously shown that fresh-frozen plasma (FFP) resuscitation reduces the size of brain lesion and associated swelling compared with crystalloids. We hypothesized that this effect would be associated with an attenuation of circulating nucleosome levels, a biomarker of injury with cytotoxic potential, through reconstitution of circulating deoxyribonuclease-1 (DNAse1), an enzyme identified as critical in nucleosome clearance from the circulation. METHODS Twelve swine underwent a protocol of traumatic brain injury followed by 40% volume-controlled hemorrhage. Animals were left in shock (mean arterial pressure of 35 mmHg) for 2 hours before they were resuscitated with normal saline (NS) or FFP. Circulating levels of nucleosomes and DNAse1 were measured whereas extracellular nucleosomes were quantified on brain histology. Lesion size and brain swelling were also quantified. RESULTS Nucleosome levels were significantly greater in the NS group 6 hours after resuscitation (0.32 mU vs 0.15 mU, P = .030) whereas DNAse1 levels were substantially greater in the FFP group (9.82 ng/mL vs 4.54 ng/mL, P = .010). Circulating nucleosomes levels correlated with lesion size (rho = 0.79, P = .002) as well as brain swelling (rho = 0.89, P < .001) whereas DNAse1 levels correlated with brain swelling (rho = -0.61, P = .036) but not lesion size (rho = -0.47, P = .124). Brain staining revealed nucleosome extracellularization in both groups, but this appeared more frequent in the NS-resuscitated animals. CONCLUSION Our results show that resuscitation with FFP attenuates circulating nucleosome levels and prevents DNAse1 depletion. These factors may play a role in the neuroprotective effects observed during early resuscitation with FFP.

Collaboration


Dive into the Hassan Albadawi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Virendra I. Patel

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge