Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hassan Mziaut is active.

Publication


Featured researches published by Hassan Mziaut.


Journal of Cell Biology | 2004

Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in beta-cells

Mirko Trajkovski; Hassan Mziaut; Anke Altkrüger; Joke Ouwendijk; Klaus-Peter Knoch; Stefan Müller; Michele Solimena

Islet cell autoantigen 512 (ICA512)/IA-2 is a receptor tyrosine phosphatase-like protein associated with the insulin secretory granules (SGs) of pancreatic β-cells. Here, we show that exocytosis of SGs and insertion of ICA512 in the plasma membrane promotes the Ca2+-dependent cleavage of ICA512 cytoplasmic domain by μ-calpain. This cleavage occurs at the plasma membrane and generates an ICA512 cytosolic fragment that is targeted to the nucleus, where it binds the E3-SUMO ligase protein inhibitor of activated signal transducer and activator of transcription-y (PIASy) and up-regulates insulin expression. Accordingly, this novel pathway directly links regulated exocytosis of SGs and control of gene expression in β-cells, whose impaired insulin production and secretion causes diabetes.


Nature Cell Biology | 2006

Synergy of glucose and growth hormone signalling in islet cells through ICA512 and STAT5

Hassan Mziaut; Mirko Trajkovski; Stephan Kersting; Armin Ehninger; Anke Altkrüger; Regis Lemaitre; Darja Schmidt; Hans-Detlev Saeger; Myung-Shik Lee; David Drechsel; Stefan Müller; Michele Solimena

Nutrients and growth hormones promote insulin production and the proliferation of pancreatic β-cells. An imbalance between ever-increasing metabolic demands and insulin output causes diabetes. Recent evidence indicates that β-cells enhance insulin gene expression depending on their secretory activity. This signalling pathway involves a catalytically inactive receptor tyrosine phosphatase, ICA512, whose cytoplasmic tail is cleaved on glucose-stimulated exocytosis of insulin secretory granules and then moves into the nucleus, where it upregulates insulin transcription. Here, we show that the cleaved cytosolic fragment of ICA512 enhances the transcription of secretory granule genes (including its own gene) by binding to tyrosine phosphorylated signal transducers and activators of transcription (STAT) 5 and preventing its dephosphorylation. Sumoylation of ICA512 by the E3 SUMO ligase PIASy, in turn, may reverse this process by decreasing the binding of ICA512 to STAT5. These findings illustrate how the exocytosis of secretory granules, through a retrograde pathway that sustains STAT activity, converges with growth hormone signalling to induce adaptive changes in β-cells in response to metabolic demands.


Journal of Immunology | 2013

The Complement Anaphylatoxin C5a Receptor Contributes to Obese Adipose Tissue Inflammation and Insulin Resistance

Julia Phieler; Kyoung-Jin Chung; Antonios Chatzigeorgiou; Anne Klotzsche-von Ameln; Ruben Garcia-Martin; David Sprott; Maria Moisidou; Theodora Tzanavari; Barbara Ludwig; Elena Baraban; Monika Ehrhart-Bornstein; Stefan R. Bornstein; Hassan Mziaut; Michele Solimena; Katia P. Karalis; Matina Economopoulou; John D. Lambris; Triantafyllos Chavakis

Obese adipose tissue (AT) inflammation contributes critically to development of insulin resistance. The complement anaphylatoxin C5a receptor (C5aR) has been implicated in inflammatory processes and as regulator of macrophage activation and polarization. However, the role of C5aR in obesity and AT inflammation has not been addressed. We engaged the model of diet-induced obesity and found that expression of C5aR was significantly upregulated in the obese AT, compared with lean AT. In addition, C5a was present in obese AT in the proximity of macrophage-rich crownlike structures. C5aR-sufficient and -deficient mice were fed a high-fat diet (HFD) or a normal diet (ND). C5aR deficiency was associated with increased AT weight upon ND feeding in males, but not in females, and with increased adipocyte size upon ND and HFD conditions in males. However, obese C5aR−/− mice displayed improved systemic and AT insulin sensitivity. Improved AT insulin sensitivity in C5aR−/− mice was associated with reduced accumulation of total and proinflammatory M1 macrophages in the obese AT, increased expression of IL-10, and decreased AT fibrosis. In contrast, no difference in β cell mass was observed owing to C5aR deficiency under an HFD. These results suggest that C5aR contributes to macrophage accumulation and M1 polarization in the obese AT and thereby to AT dysfunction and development of AT insulin resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2008

ICA512 signaling enhances pancreatic beta-cell proliferation by regulating cyclins D through STATs

Hassan Mziaut; Stephan Kersting; Klaus-Peter Knoch; Wan-Hung Fan; Mirko Trajkovski; Katja Erdmann; Hendrik Bergert; Florian Ehehalt; Hans-Detlev Saeger; Michele Solimena

Changes in metabolic demands dynamically regulate the total mass of adult pancreatic β-cells to adjust insulin secretion and preserve glucose homeostasis. Glucose itself is a major regulator of β-cell proliferation by inducing insulin secretion and activating β-cell insulin receptors. Here, we show that islet cell autoantigen 512 (ICA512)/IA-2, an intrinsic tyrosine phosphatase-like protein of the secretory granules, activates a complementary pathway for β-cell proliferation. On granule exocytosis, the ICA512 cytoplasmic domain is cleaved and the resulting cytosolic fragment (ICA512-CCF) moves into the nucleus where it enhances the levels of phosphorylated STAT5 and STAT3, thereby inducing insulin gene transcription and granule biogenesis. We now show that knockdown of ICA512 decreases cyclin D1 levels and proliferation of insulinoma INS-1 cells, whereas β-cell regeneration is reduced in partially pancreatectomized ICA512−/− mice. Conversely, overexpression of ICA512-CCF increases both cyclin D1 and D2 levels and INS-1 cell proliferation. Up-regulation of cyclin D1 and D2 by ICA512-CCF is affected by knockdown of STAT3 and STAT5, respectively, whereas it does not require insulin signaling. These results identify ICA512 as a regulator of cyclins D and β-cell proliferation through STATs and may have implication for diabetes therapy.


Journal of Biological Chemistry | 1999

Targeting proteins to the lumen of endoplasmic reticulum using N-terminal domains of 11beta-hydroxysteroid dehydrogenase and the 50-kDa esterase.

Hassan Mziaut; George Korza; Arthur R. Hand; Craig Gerard; Juris Ozols

Previous studies identified two intrinsic endoplasmic reticulum (ER) proteins, 11β-hydroxysteroid dehydrogenase, isozyme 1 (11β-HSD) and the 50-kDa esterase (E3), sharing some amino acid sequence motifs in their N-terminal transmembrane (TM) domains. Both are type II membrane proteins with the C terminus projecting into the lumen of the ER. This finding implied that the N-terminal TM domains of 11β-HSD and E3 may constitute a lumenal targeting signal (LTS). To investigate this hypothesis we created chimeric fusions using the putative targeting sequences and the reporter gene, Aequorea victoria green fluorescent protein. Transfected COS cells expressing LTS-green fluorescent protein chimeras were examined by fluorescent microscopy and electron microscopic immunogold labeling. The orientation of expressed chimeras was established by immunocytofluorescent staining of selectively permeabilized COS cells. In addition, protease protection assays of membranes in the presence and absence of detergents was used to confirm lumenal or the cytosolic orientation of the constructed chimeras. To investigate the general applicability of the proposed LTS, we fused the N terminus of E3 to the N terminus of the NADH-cytochromeb5 reductase lacking the myristoyl group and N-terminal 30-residue membrane anchor. The orientation of the cytochromeb5 reductase was reversed, from cytosolic to lumenal projection of the active domain. These observations establish that an amino acid sequence consisting of short basic or neutral residues at the N terminus, followed by a specific array of hydrophobic residues terminating with acidic residues, is sufficient for lumenal targeting of single-pass proteins that are structurally and functionally unrelated.


Journal of Biological Chemistry | 2008

Regulation of Insulin Granule Turnover in Pancreatic β-Cells by Cleaved ICA512

Mirko Trajkovski; Hassan Mziaut; Sandra Schubert; Yannis Kalaidzidis; Anke Altkrüger; Michele Solimena

Insulin maintains homeostasis of glucose by promoting its uptake into cells from the blood. Hyperglycemia triggers secretion of insulin from pancreatic β-cells. This process is mediated by secretory granule exocytosis. However, how β-cells keep granule stores relatively constant is still unknown. ICA512 is an intrinsic granule membrane protein, whose cytosolic domain binds β2-syntrophin, an F-actin-associated protein, and is cleaved upon granule exocytosis. The resulting cleaved cytosolic fragment, ICA512-CCF, reaches the nucleus and up-regulates the transcription of granule genes, including insulin and ICA512. Here, we show that ICA512-CCF also dimerizes with intact ICA512 on granules, thereby displacing it from β2-syntrophin. This leads to increased granule mobility and insulin release. Based on these findings, we propose a model whereby the generation of ICA512-CCF first amplifies insulin secretion. The ensuing reduction of granule stores would then increase the probability of newly generated ICA512-CCF to reach the nucleus and enhance granule biogenesis, thus allowing β-cells to constantly adjust production of granules to their storage size and consumption. Pharmacological modulation of these feedback loops may alleviate deficient insulin release in diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Aged insulin granules display reduced microtubule-dependent mobility and are disposed within actin-positive multigranular bodies

Peter Hoboth; Andreas Müller; Anna Ivanova; Hassan Mziaut; Jaber Dehghany; Anke Sönmez; Martina Lachnit; Michael Meyer-Hermann; Yannis Kalaidzidis; Michele Solimena

Significance Insulin is key for control of glucose homeostasis in vertebrates. Insufficient insulin secretion relative to metabolic needs causes diabetes. Pancreatic beta cells store insulin into secretory granules (SGs), which release insulin extracellularly upon fusion with the plasma membrane. SGs exist in different functional pools, with newly generated SGs being preferentially secreted. Here we show that aged SGs display reduced competence for glucose-stimulated microtubule-mediated transport and are disposed within actin-positive multigranular bodies. These data highlight the link between SG age and mobility and thus are relevant for better understanding insulin secretion in health and diabetes. Insulin secretion is key for glucose homeostasis. Insulin secretory granules (SGs) exist in different functional pools, with young SGs being more mobile and preferentially secreted. However, the principles governing the mobility of age-distinct SGs remain undefined. Using the time-reporter insulin-SNAP to track age-distinct SGs we now show that their dynamics can be classified into three components: highly dynamic, restricted, and nearly immobile. Young SGs display all three components, whereas old SGs are either restricted or nearly immobile. Both glucose stimulation and F-actin depolymerization recruit a fraction of nearly immobile young, but not old, SGs for highly dynamic, microtubule-dependent transport. Moreover, F-actin marks multigranular bodies/lysosomes containing aged SGs. These data demonstrate that SGs lose their responsiveness to glucose stimulation and competence for microtubule-mediated transport over time while changing their relationship with F-actin.


Diabetes, Obesity and Metabolism | 2009

β-Cells at the crossroads: choosing between insulin granule production and proliferation

Yanmei Liu; Hassan Mziaut; Anna Ivanova; Michele Solimena

Pancreatic β‐cells are the sole source of insulin, the major hormonal regulator of glycaemia. In physiological and pathological conditions with increased insulin demand, β‐cells adjust their insulin output either through increased insulin secretory granule (ISG) biogenesis and secretion, or hyperplasia. Failure of these compensatory mechanisms eventually results in hyperglycaemia and diabetes mellitus. Both of these major adaptive behaviours are positively regulated by several extrinsic factors, such as glucose, GLP‐1, insulin and growth hormones (GH). Still unclear, however, it is how β‐cells in response to these stimuli opt for one or the other strategy at a given time. Here we review recent advances concerning the factors and pathways that enhance ISG biogenesis and β‐cell replication, and propose the existence of ‘switch factors that play a key role in regulating the shift between these two adaptive responses.


Biochimica et Biophysica Acta | 2002

Selective mutagenesis of lysyl residues leads to a stable and active form of delta 9 stearoyl-CoA desaturase

Hassan Mziaut; George Korza; Abdellatif Benraiss; Juris Ozols

Stearoyl-CoA desaturase (SCD) is a short-lived integral membrane protein of the endoplasmic reticulum (ER) that catalyzes the insertion of a double bond in the delta 9 position of saturated fatty acids. Its expression has been difficult in heterologous systems. In this study, recombinant adenovirus vector was used to express both wild-type (wt) and engineered forms of rat SCD in human transformed kidney cells. In the engineered form of SCD, lysyl residues at positions 33, 35, and 36 were mutated to alanine (SCD K/A). The recombinant adenovirus also contains a cDNA encoding the green fluorescent protein (GFP). The stable reporter GFP was used to analyze the efficiency of transfection and the stability of expressed SCDs. The wt SCD was unstable upon expression, whereas expression of SCD K/A resulted in the stabilization of the protein. The proteasome inhibitor MG132 did not affect the rapid degradation of expressed wt SCD, implying that proteasome is not involved in this degradation. Functional analysis of microsomes from infected cells expressing SCD K/A resulted in the formation of holoenzyme with desaturase activity. Here we report engineering a stabilized form of a rapidly degraded membrane protein for production of an active mutant form of SCD. The adenovirus transformed cells may provide a model for the study of the effects of positive SCD expression.


Diabetologia | 2018

Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes

Michele Solimena; Anke Schulte; Lorella Marselli; Florian Ehehalt; Daniela Richter; Manuela Kleeberg; Hassan Mziaut; Klaus-Peter Knoch; Julia Parnis; Marco Bugliani; Afshan Siddiq; Anne Jörns; Frédéric Burdet; Robin Liechti; Mara Suleiman; Daniel Margerie; Farooq Syed; Marius Distler; Robert Grützmann; Enrico Petretto; Aida Moreno-Moral; Carolin Wegbrod; Anke Sönmez; Katja Pfriem; Anne Friedrich; Jörn Meinel; Claes B. Wollheim; Gustavo Baretton; Raphael Scharfmann; Everson Nogoceke

Aims/hypothesisPancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium (www.imidia.org) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP).MethodsAffymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells.ResultsComparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes.Conclusions/interpretationThese studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.

Collaboration


Dive into the Hassan Mziaut's collaboration.

Top Co-Authors

Avatar

Michele Solimena

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George Korza

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Juris Ozols

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Anna Ivanova

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Klaus-Peter Knoch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Meyer-Hermann

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stephan Kersting

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge