Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hatasu Kobayashi is active.

Publication


Featured researches published by Hatasu Kobayashi.


PLOS ONE | 2011

Identification of RNF213 as a Susceptibility Gene for Moyamoya Disease and Its Possible Role in Vascular Development

Wanyang Liu; Daisuke Morito; Seiji Takashima; Yohei Mineharu; Hatasu Kobayashi; Toshiaki Hitomi; Hirokuni Hashikata; Norio Matsuura; Satoru Yamazaki; Atsushi Toyoda; Ken-ichiro Kikuta; Yasushi Takagi; Kouji H. Harada; Asao Fujiyama; R. Herzig; Boris Krischek; Liping Zou; Jeong Eun Kim; Masafumi Kitakaze; Susumu Miyamoto; Kazuhiro Nagata; Nobuo Hashimoto; Akio Koizumi

Background Moyamoya disease is an idiopathic vascular disorder of intracranial arteries. Its susceptibility locus has been mapped to 17q25.3 in Japanese families, but the susceptibility gene is unknown. Methodology/Principal Findings Genome-wide linkage analysis in eight three-generation families with moyamoya disease revealed linkage to 17q25.3 (P<10-4). Fine mapping demonstrated a 1.5-Mb disease locus bounded by D17S1806 and rs2280147. We conducted exome analysis of the eight index cases in these families, with results filtered through Ng criteria. There was a variant of p.N321S in PCMTD1 and p.R4810K in RNF213 in the 1.5-Mb locus of the eight index cases. The p.N321S variant in PCMTD1 could not be confirmed by the Sanger method. Sequencing RNF213 in 42 index cases confirmed p.R4810K and revealed it to be the only unregistered variant. Genotyping 39 SNPs around RNF213 revealed a founder haplotype transmitted in 42 families. Sequencing the 260-kb region covering the founder haplotype in one index case did not show any coding variants except p.R4810K. A case-control study demonstrated strong association of p.R4810K with moyamoya disease in East Asian populations (251 cases and 707 controls) with an odds ratio of 111.8 (P = 10−119). Sequencing of RNF213 in East Asian cases revealed additional novel variants: p.D4863N, p.E4950D, p.A5021V, p.D5160E, and p.E5176G. Among Caucasian cases, variants p.N3962D, p.D4013N, p.R4062Q and p.P4608S were identified. RNF213 encodes a 591-kDa cytosolic protein that possesses two functional domains: a Walker motif and a RING finger domain. These exhibit ATPase and ubiquitin ligase activities. Although the mutant alleles (p.R4810K or p.D4013N in the RING domain) did not affect transcription levels or ubiquitination activity, knockdown of RNF213 in zebrafish caused irregular wall formation in trunk arteries and abnormal sprouting vessels. Conclusions/Significance We provide evidence suggesting, for the first time, the involvement of RNF213 in genetic susceptibility to moyamoya disease.


American Journal of Human Genetics | 2011

Expansion of Intronic GGCCTG Hexanucleotide Repeat in NOP56 Causes SCA36, a Type of Spinocerebellar Ataxia Accompanied by Motor Neuron Involvement

Hatasu Kobayashi; Koji Abe; Tohru Matsuura; Yoshio Ikeda; Toshiaki Hitomi; Yuji Akechi; Toshiyuki Habu; Wanyang Liu; Hiroko Okuda; Akio Koizumi

Autosomal-dominant spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative disorders. In this study, we performed genetic analysis of a unique form of SCA (SCA36) that is accompanied by motor neuron involvement. Genome-wide linkage analysis and subsequent fine mapping for three unrelated Japanese families in a cohort of SCA cases, in whom molecular diagnosis had never been performed, mapped the disease locus to the region of a 1.8 Mb stretch (LOD score of 4.60) on 20p13 (D20S906-D20S193) harboring 37 genes with definitive open reading frames. We sequenced 33 of these and observed a large expansion of an intronic GGCCTG hexanucleotide repeat in NOP56 and an unregistered missense variant (Phe265Leu) in C20orf194, but we found no mutations in PDYN and TGM6. The expansion showed complete segregation with the SCA phenotype in family studies, whereas Phe265Leu in C20orf194 did not. Screening of the expansions in the SCA cohort cases revealed four additional occurrences, but none were revealed in the cohort of 27 Alzheimer disease cases, 154 amyotrophic lateral sclerosis cases, or 300 controls. In total, nine unrelated cases were found in 251 cohort SCA patients (3.6%). A founder haplotype was confirmed in these cases. RNA foci formation was detected in lymphoblastoid cells from affected subjects by fluorescence in situ hybridization. Double staining and gel-shift assay showed that (GGCCUG)n binds the RNA-binding protein SRSF2 but that (CUG)(6) does not. In addition, transcription of MIR1292, a neighboring miRNA, was significantly decreased in lymphoblastoid cells of SCA patients. Our finding suggests that SCA36 is caused by hexanucleotide repeat expansions through RNA gain of function.


Biochemical and Biophysical Research Communications | 2013

Downregulation of Securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients.

Toshiaki Hitomi; Toshiyuki Habu; Hatasu Kobayashi; Hiroko Okuda; Kouji H. Harada; Kenji Osafune; Daisuke Taura; Masakatsu Sone; Isao Asaka; Tomonaga Ameku; Akira Watanabe; Tomoko Kasahara; Fumihiko Shiota; Hirokuni Hashikata; Yasushi Takagi; Daisuke Morito; Susumu Miyamoto; Kazuwa Nakao; Akio Koizumi

Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. Induced pluripotent stem cells (iPSCs) were established from unaffected fibroblast donors with wild-type RNF213 alleles, and from carriers/patients with one or two RNF213 R4810K alleles. Angiogenic activities of iPSC-derived vascular endothelial cells (iPSECs) from patients and carriers were lower (49.0 ± 19.4%) than from wild-type subjects (p<0.01). Gene expression profiles in iPSECs showed that Securin was down-regulated (p<0.01) in carriers and patients. Overexpression of RNF213 R4810K downregulated Securin, inhibited angiogenic activity (36.0 ± 16.9%) and proliferation of humanumbilical vein endothelial cells (HUVECs) while overexpression of RNF213 wild type did not. Securin expression was downregulated using RNA interference techniques, which reduced the level of tube formation in iPSECs and HUVECs without inhibition of proliferation. RNF213 R4810K reduced angiogenic activities of iPSECs from patients with MMD, suggesting that it is a promising in vitro model for MMD.


Free Radical Biology and Medicine | 2009

Proteomic identification of carbonylated proteins in the monkey hippocampus after ischemia–reperfusion

Shinji Oikawa; Tomoko Yamada; Toshikazu Minohata; Hatasu Kobayashi; Ayako Furukawa; Saeko Tada-Oikawa; Yusuke Hiraku; Mariko Murata; Mitsuru Kikuchi; Tetsumori Yamashima

Reactive oxygen species (ROS) are known to participate in neurodegeneration after ischemia-reperfusion. With the aid of ROS, the calpain-induced lysosomal rupture provokes ischemic neuronal death in the cornu Ammonis (CA) 1 of the hippocampus; however, the target proteins of ROS still remain unknown. Here a proteomic analysis was done to identify and characterize ROS-induced carbonyl modification of proteins in the CA1 of the macaque monkey after transient whole-brain ischemia followed by reperfusion. We found that carbonyl modification of heat shock 70-kDa protein 1 (Hsp70-1), a major stress-inducible member of the Hsp70 family, was extensively increased before the neuronal death in the CA1 sector, and the carbonylation site was identified to be Arg469 of Hsp70-1. The CA1 neuronal death conceivably occurs by calpain-mediated cleavage of carbonylated Hsp70 that becomes prone to proteolysis with the resultant lysosomal rupture. In addition, the carbonyl levels of dihydropyrimidinase-like 2 isoform 2, glial fibrillary acidic protein, and beta-actin were remarkably increased in the postischemic CA1. Therefore, ischemia-reperfusion-induced oxidative damage to these proteins in the CA1 may lead to loss of the neuroprotective function, which contributes to neuronal death.


Neurology | 2012

Clinical features of SCA36 A novel spinocerebellar ataxia with motor neuron involvement (Asidan)

Yoshio Ikeda; Yasuyuki Ohta; Hatasu Kobayashi; Miyuki Okamoto; Kazuhiro Takamatsu; Taisei Ota; Yasuhiro Manabe; Koichi Okamoto; Akio Koizumi; Koji Abe

Objective: To characterize the phenotype of spinocerebellar ataxia type 36 (SCA36), a novel dominant disorder (nicknamed “Asidan”) caused by a hexanucleotide GGCCTG repeat expansion in intron 1 of the NOP56 gene. Methods: We investigated the clinical, genetic, and neuropathologic characteristics of 18 patients with SCA36. We performed histologic evaluation of a muscle biopsy specimen from 1 patient with SCA36, and neuropathologic evaluation of an autopsied brain from another patient with SCA36. Results: The (GGCCTG)n expansion was found in 18 ataxic patients from 9 families. The age at onset of ataxia was 53.1 ± 3.4 years, with the most frequent symptoms being truncal ataxia (100% of patients), ataxic dysarthria (100%), limb ataxia (93%), and hyperreflexia (79%). Tongue fasciculation and subsequent atrophy were found in 71% of cases, particularly in those of long duration. Skeletal muscle fasciculation and atrophy of the limbs and trunk were found in 57% of cases. Lower motor involvement was confirmed by EMG and muscle biopsy. The neuropathologic study revealed significant cerebellar Purkinje cell degeneration with obvious loss of lower motor neurons. Immunohistochemical analysis showed that NOP56 was localized to the nuclei of various neurons. Cytoplasmic or intranuclear inclusion staining of NOP56, TDP-43, and ataxin-2 was not observed in the remaining neurons. Conclusions: This is the first description of the unique clinical features of SCA36, a relatively pure cerebellar ataxia with progressive motor neuron involvement. Thus, SCA36 is a disease that stands at the crossroads of SCA and motor neuron disease.


Biochemical and Biophysical Research Communications | 2011

Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosoma haematobium infection

Ning Ma; Raynoo Thanan; Hatasu Kobayashi; Olfat Hammam; Mohamed Wishahi; Tarek El Leithy; Yusuke Hiraku; EL-Karef Amro; Shinji Oikawa; Shiho Ohnishi; Mariko Murata; Shosuke Kawanishi

To investigate whether mutant stem cells participate in inflammation-related carcinogenesis, we performed immunohistochemical analysis to examine nitrative and oxidative DNA lesions (8-nitroguanine and 8-oxodG) and a stem cell marker Oct3/4 in bladder tissues obtained from cystitis and bladder cancer patients infected with Schistosomahaematobium (S. haematobium). We also detected the expression of nuclear factor-κB (NF-κB) and inducible nitric oxide synthase (iNOS), which lead to 8-nitroguanine formation. The staining intensity of 8-nitroguanine and 8-oxodG was significantly higher in bladder cancer and cystitis tissues than in normal tissues. iNOS expression was colocalized with NF-κB in 8-nitroguanine-positive tumor cells from bladder cancer patients. Oct3/4 expression was significantly increased in cells from S. haematobium-associated bladder cancer tissues in comparison to normal bladder and cancer tissues without infection. Oct3/4 was also expressed in epithelial cells of cystitis patients. Moreover, 8-nitroguanine was formed in Oct3/4-positive stem cells in S. haematobium-associated cystitis and cancer tissues. In conclusion, inflammation by S.haematobium infection may increase the number of mutant stem cells, in which iNOS-dependent DNA damage occurs via NF-κB activation, leading to tumor development.


Journal of Occupational Health | 2014

An Integrative Study of the Genetic, Social and Environmental Determinants of Chronic Kidney Disease Characterized by Tubulointerstitial Damages in the North Central Region of Sri Lanka

Shanika Nanayakkara; Stmld Senevirathna; Tilak Abeysekera; Rohana Chandrajith; Neelakanthi Ratnatunga; E. D.L. Gunarathne; Junxia Yan; Toshiaki Hitomi; Eri Muso; Toshiyuki Komiya; Kouji H. Harada; Wanyang Liu; Hatasu Kobayashi; Hiroko Okuda; Hideyuki Sawatari; Fumihiko Matsuda; Ryo Yamada; Takao Watanabe; Hideki Miyataka; Seiichiro Himeno; Akio Koizumi

An Integrative Study of the Genetic, Social and Environmental Determinants of Chronic Kidney Disease Characterized by Tubulointerstitial Damages in the North Central Region of Sri Lanka: Shanika NANAYAKKARA, et al. Department of Health and Environmental Sciences, Graduate School of Medicine, Kyoto University—


Free Radical Biology and Medicine | 2013

Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis

Raynoo Thanan; Chawalit Pairojkul; Somchai Pinlaor; Narong Khuntikeo; Chaisiri Wongkham; Banchob Sripa; Ning Ma; Kulthida Vaeteewoottacharn; Ayako Furukawa; Hatasu Kobayashi; Yusuke Hiraku; Shinji Oikawa; Shosuke Kawanishi; Puangrat Yongvanit; Mariko Murata

Nitrative and oxidative DNA damage plays an important role in inflammation-related carcinogenesis. Chronic inflammation such as parasite infection and primary sclerosing cholangitis can be an etiological factor of cholangiocarcinoma. Using a proteomic approach and double-fluorescent staining, we identified high expression and colocalization of albumin and cytokeratin-19 in liver fluke-associated cholangiocarcinoma tissues, compared with normal livers from cholangiocarcinoma patients and cadaveric donors, respectively. Albumin was detected not only in cells of hyperplastic bile ducts and cholangiocarcinoma, but also in liver stem/progenitor cell origin, such as canal of Hering, ductules, and ductular reactions, suggesting the involvement of stem/progenitor cells in cholangiocarcinoma development. To clarify the involvement of liver stem/progenitor cells in cholangiocarcinoma, we examined several stem/progenitor cell markers (CD133, CD44, OV6, and Oct3/4) in cholangiocarcinoma tissues analyzed by immunohistochemical staining, and measured 8-oxodG levels by using HPLC-ECD as an inflammation-related DNA lesion. In addition, a stem/progenitor cell factor Bmi1, 8-nitroguanine (formed during nitrative DNA damage), DNA damage response (DDR) proteins (phosphorylated ATM and γ-H2AX), and manganese-SOD (Mn-SOD) were analyzed by immunohistochemistry. Stem/progenitor cell markers (CD133, OV6, CD44, and Oct3/4) were positively stained in 56, 38, 47, and 56% of 34 cholangiocarcinoma cases, respectively. Quantitative analysis of 8-oxodG revealed significantly increased levels in CD133- and/or Oct3/4-positive tumor tissues compared to negative tumor tissues, as well as 8-nitroguanine formation detected by immunohistochemistry. In the cases of CD44- and/or OV6-positive tissue, no significant difference was observed. Cholangiocarcinoma patients with CD133- and/or Oct3/4-positive tumor tissues showed significantly lower expression of Mn-SOD and higher DDR protein, γ-H2AX. Moreover, CD133- and/or Oct3/4-positive cholangiocarcinoma patients had significant associations with tumor histology types, tumor stage, and poor prognoses. Our results suggest that CD133 and Oct3/4 in cholangiocarcinoma are associated with increased formation of DNA lesions and the DDR protein, which may be involved in genetic instability and lead to cholangiocarcinoma development with aggressive clinical features.


Biochemical and Biophysical Research Communications | 2013

The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality.

Toshiaki Hitomi; Toshiyuki Habu; Hatasu Kobayashi; Hiroko Okuda; Kouji H. Harada; Kenji Osafune; Daisuke Taura; Masakatsu Sone; Isao Asaka; Tomonaga Ameku; Akira Watanabe; Tomoko Kasahara; Fumihiko Shiota; Hirokuni Hashikata; Yasushi Takagi; Daisuke Morito; Susumu Miyamoto; Kazuwa Nakao; Akio Koizumi

Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n=3, 61.0 ± 8.2%) compared with wild-type subjects (n=6, 13.1 ± 7.7%; p<0.01). Aneuploidy was observed more frequently in fibroblasts (p<0.01) and induced pluripotent stem cells (iPSCs) (p<0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p<0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p<0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.


Journal of the American Heart Association | 2015

Biochemical and Functional Characterization of RNF213 (Mysterin) R4810K, a Susceptibility Mutation of Moyamoya Disease, in Angiogenesis In Vitro and In Vivo

Hatasu Kobayashi; Yoshiko Matsuda; Toshiaki Hitomi; Hiroko Okuda; Hirotomo Shioi; Tetsuya Matsuda; Hirohiko Imai; Masakatsu Sone; Daisuke Taura; Kouji H. Harada; Toshiyuki Habu; Yasushi Takagi; Susumu Miyamoto; Akio Koizumi

Background P.R4810K of RNF213 (mysterin: rs112735431), which is an AAA+ ATPase, is the susceptibility polymorphism for moyamoya disease (MMD) in East Asians. However, the role of RNF213 R4810K in the etiology of MMD is unknown. Methods and Results To clarify the role of RNF213 in known angiogenic pathways, RNF213 expression was analyzed in endothelial cells (ECs) treated with several angiogenic and antiangiogenic factors, including interferons (IFNs). RNF213 was upregulated by IFN-β through signal transducer and activator of transcription x in the promoter and mediated antiangiogenic activity of IFN-β. RNF213 wild-type (WT) overexpression could not lower angiogenesis without IFN-β, but RNF213 R4810K overexpression could. To correlate biochemical function as ATPase and the role of RNF213 oligomer formation with antiangiogenic activity, we investigated the effects of mutations in the AAA+ module. A mutation of the Walker B motif (WEQ), which stabilizes oligomerization, inhibited angiogenesis, but AAA+ module deletion, which cannot initiate oligomerization, did not. Intriguingly, R4810K, similar to WEQ, decreased ATPase activity, suggesting its antiangiogenic activity through stabilizing oligomers. To confirm the antiangiogenic effect of RNF213 upregulation in vivo, vascular EC- or smooth muscle cell-specific Rnf213 R4757K (R4810K ortholog) or WT transgenic (Tg) mice were exposed to hypoxia. Cerebral angiogenesis by hypoxia was suppressed in EC-specific Rnf213 R4757K Tg mice, whereas it was not suppressed in other mice. Conclusions This study suggests the importance of inflammatory signals as environmental factors and R4810K carriers for susceptibility to cerebral hypoxia. A specific inhibitor of ATP binding to the first AAA+ could be a promising therapeutic candidate for MMD.

Collaboration


Dive into the Hatasu Kobayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wanyang Liu

China Medical University (PRC)

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge