Haukur Hafsteinsson
Chalmers University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Haukur Hafsteinsson.
51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition | 2013
Daniel R. Cuppoletti; Ephraim Gutmark; Haukur Hafsteinsson; Lars-Erik Eriksson; Erik Prisell
Fluidic injection for noise control of high Reynolds number jets has shown promise and recent tests have demonstrated improved noise reduction while decreasing the injection mass flow required. This investigation was an experimental and numerical study on the capability of pulsed fluidic injection to reduce noise on a Md = 1.56 supersonic jet. The effect of pulse frequency, duty cycle, injector phasing, and injection angle on the noise components were studied. The pulsed injectors were characterized with hot-wire measurements. Far-fleld acoustics was used to survey the noise reduction of pulsed injection (up to 400 Hz) in comparison to the baseline and steady injection cases. Injection angles θinj = 30° to 90° with respect to the primary jet axis were investigated. High-speed shadowgraph was used to quantify the time scales involved in response of the shock train and screech instabilities with pulsed fluidic injection. LES and CAA were compared with measurements to evaluate the capability of numerical simulation of the pulsed injection configurations. It was shown that reduction of turbulent mixing noise generally scales with the actual duty cycle of applied injection. For 30 Hz injection at 20% mass flow up to up to 80% of the steady flow {increment}OASPL is achieved, demonstrating that low frequency injection is capable of enhanced noise reduction at certain conditions. The shocks in the jet potential core respond in 1 ms when injection is removed, while the jet column instability requires up to 7 ms to redevelop after injection is removed. The results demonstrate the feasibility of using active control with pulsed fluidic actuators to provide at least steady flow noise reduction with significantly reduced injection mass flow.
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, 9-12 January 2012 | 2012
Bernhard Gustafsson; Daniel R. Cuppoletti; Ephraim Gutmark; Haukur Hafsteinsson; Lars-Erik Eriksson; Erik Prisell
Noise from engines that operate at supersonic conditions, especially high performance military aircraft, often utilize a converging-diverging nozzle with variable area control. This design usually includes a sharp nozzle throat which creates internal shock formation. Turbulent structure interaction with these shocks results in additional noise components other than turbulent mixing noise to be introduced to the jet noise spectrum. The present study investigates how weakening the internal shocks affects the flow and acoustics of a Mach 1.6 jet. RANS simulations were used to minimize internal shock formation and optimize the flow contours of the converging portion and throat of a C-D nozzle. A response surface methodology was used to evaluate 3000 possible designs using the RANS results as model inputs. An experimental investigation was conducted with a splined nozzle design that is virtually free of internal shocks. The flow field was measured using PIV for comparison with RANS and LES. Mean velocity and turbulence was captured well by the computations for the sharp throat and splined nozzles. Although the throat shocks were nearly eliminated, the overall shock strength was relatively unchanged. Far-field acoustic results showed little difference at thrust matched conditions since the overall shock strength was unchanged. The nozzle performance is greatly improved through throat optimization, providing equivalent thrust with 4% less pressure with no acoustic penalty.
AIAA Journal | 2015
Haukur Hafsteinsson; Lars-Erik Eriksson; Niklas Andersson; Daniel R. Cuppoletti; Ephraim Gutmark
Large-eddy simulation is used to investigate steady-state mass flow injection into a supersonic jet stream with and without flapping motion of the microjets. The results are validated with particle image velocimetry and acoustic measurements. The effect of microjet penetration on the far-field acoustics is studied by altering the number of injectors, the cross-sectional area of each injector, and the injection mass flow. The injectors are evenly distributed around the nozzle exit. The injection angle is 90 deg relative to the main jet flow. This research is a continuation of a previous large-eddy simulation study of pulsed injection that showed that the unsteady injection-induced pressure pulses in the jet caused increased tonal noise for far-field observers at low angles. Flapping jet injection was shown to minimize the creation of the pressure pulses, except for high-amplitude flapping angles and high injection mass flows, where the injections divert out of the shear layer and introduce periodic superposition of the double shock-cell structure. Furthermore, the flapping injection did not show improved noise reduction compared with the steady injection, which is essentially promising because steady injection proves to be a more practical solution for implementation in real jet engine applications.
aiaa ceas aeroacoustics conference | 2012
Cuppoletti Daniel; Gutmark Ephraim; Haukur Hafsteinsson; Lars-Erik Eriksson; Prisell Erik
Nozzles used in supersonic flight applications have flow contours that cause the flow to differ from isentropic nozzle flow, resulting in less than ideal nozzle performance. The impact of nozzle contour on performance is well quantified, however it is less clear how the nozzle contour affects supersonic jet noise. This work investigates differences in noise characteristics of a sharp throat and contoured throat nozzle to identify the dependencies of supersonic noise components on the nozzle design. The nozzles are designed to be thrust matched at fully expanded conditions. The throat contour does not significantly affect the acoustics at fully expanded conditions, although the nozzle efficiency is increased for the contoured throat nozzle. Contouring the throat causes the nozzle to have screech instabilities over a broader range of operating conditions when imperfectly expanded. A detailed PIV and LES investigation was used to explain the acoustics behavior at all conditions. Reducing the throat shock strength increased the nozzle exit shock strength and periodicity, subsequently increasing the susceptibility to screech. Nozzle performance is increased at all operating conditions with the contoured throat nozzle.
50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, 9-12 January 2012 | 2012
Haukur Hafsteinsson; Lars-Erik Eriksson; Daniel R. Cuppoletti; Ephraim Gutmark; Erik Prisell
Noise suppression devices on military jet engines are motivated by the need to reduce community noise as well as the acoustic load on airfield personnel during peacetime operation. They may also reduce problems with sonic fatigue on the aircraft. Micro-jets have previously been shown as a promising tool for active noise suppression. In the work presented here, compressible LES simulations have been done for slightly overexpanded conical C-D nozzle with a Mach number of 1.58 at NPR = 4.0 and a free stream flow Mach number of 0.1. Two microjet configurations have been simulated. One with steady-state injection and an other with pulsating trailing-edge injection having a maximum mass flow-rate of mi/mj = 1.6%. The acoustic field is expanded to the far field using the Kirchhoff integral method. The effect of injection frequency and pulsation characteristics on the flow-field and the radiated sound is investigated. Comparison is made between the LES and simulations and experiments for the steady-state and no injection cases and shows excellent agreement for the screech tone frequency and the predictided OASPL is within 2 dB deviation from the measurements. The pulsating injection cases investigated show that the frequency spectrum and the noise levels are sensitive to the injection frequency as well as pulsation characteristics. It is shown that steady-state injection and pulsating injection of equal max mass flow result in comparable reduction in terms of OASPL. The latter, however, comes with the penalty of increased noise for the upstream observers.
54th AIAA Aerospace Sciences Meeting, 2016, San Diego, United States, 4-8 January 2016 | 2016
Haukur Hafsteinsson; Niklas Andersson; Bhupatindra Malla; Ephraim Gutmark
We live in a world with ever increasing air traffic and the demand for fuel efficient low noise emitting aircraft is high. The use of blended wing bodies (BWB) has gained interests within the aerospace industry due to its potential for reduced fuel consumption. These type of aircraft are generally equipped with rectangular nozzles. The drawback of such nozzles is increased instability of the emanating jet which increases the risk of higher noise radiation. Understanding the instability patterns and the underlying flow physics is therefore the key to improved stability and reduced noise. In the presented paper, an LES/CAA approach is utilized to predict the flow dynamics and the radiated noise from a rectangular nozzle. The nozzle is operated at underexpanded conditions. The simulations are compared with experiments and are used as a complement to the experimental data for improved understanding of the flow physics. The supersonic jet is found to exhibit an intense flapping motion followed by a large jet spreading in the minor-axis plane. In general, the prediction of the most amplified frequency and higher harmonics observed in the near-field and far-field spectra is in agreement with the experiment. Two types of flow events associated with the generation of high amplitude acoustic waves are detected. These events are identified as vortex-collision and shock-leakage through the shear layer.
aiaa/ceas aeroacoustics conference | 2014
Ragnar Lárusson; Haukur Hafsteinsson; Niklas Andersson; Lars-Erik Eriksson
Supersonic jet noise has been an important research topic for decades, both for its relevance within the aeronautical industry and for its scientific value. In the present study, the jet flow field produced by a slightly over expanded conical convergent-divergent nozzle was studied using modal decomposition. The nozzle exit Mach number is 1.58 at a nozzle pressure ratio of 4.0. The nozzle has an engine like geometry with a relatively sharp throat, creating an internal shock wave. Two different methods for modal decomposition were applied to the supersonic jet flow, namely Dynamic Mode Decomposition (DMD) and a method based on the Arnoldi algorithm. The DMD algorithm returns the eigenmodes of an approximate linear flow operator, which is constructed from the data set used in the algorithm. In the present study, the DMD algorithm was applied to observational data from a Large Eddy Simulation (LES) and 2D axisymmetric URANS simulation, respectively. The Arnoldi algorithm uses a 2D linearized flow solver to project the linear flow dynamics onto a reduced order Krylov subspace and computes the eigenmodes of that projection. Here, A steady state RANS solution of the jet flow was used as a reference state in the linear solver. The Results of the Arnoldi analysis for a azimuthal wavenumber m = 0 were directly compered with the DMD modes of a URANS simulations. It was found that both methods produce nearly identical modes in this case. The DMD modes of the LES data are comparable with the Arnoldi and URANS DMD modes in terms of frequency, acoustic radiation, and shock-cell movement. They were however, found to be significantly more damped. An additional Arnoldi analysis was performed with azimuthal wavenumber m = 1 and the resulting least damped mode had a frequency close to the experimentally observed screech frequency for the same nozzle geometry and operating condition. An animation of the evolution of the eigenmode reveals a feedback loop mechanisms that might contribute to the formation of screech tones.
52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014; National Harbor, MD; United States; 13 January 2014 through 17 January 2014 | 2014
Daniel R. Cuppoletti; Ephraim Gutmark; Haukur Hafsteinsson; Lars-Erik Eriksson; Erik Prisell
Considerable focus on noise abatement for aircraft has spawned various noise control devices, passive and active. Aircraft and propulsion system design now has the additional criteria of acoustic performance to consider among many other criteria in advanced flight vehicle design. It is essential to consider the effect that noise control methods have on the performance of the propulsion device and overall effect on system performance. Thrust calculated from measurements and LES are compared for a Md = 1.56 jet at various operating conditions for validation. Experimental measurements on the baseline supersonic jet are used to validate computational results for the pressure and momentum thrust components. Thrust for various fluidic injection configurations are evaluated using computational results from the highly three dimensional flowfield. Analysis and discussion of requirements for fluidic injection air are provided to develop a complete system approach to aid design of fluidic injection systems. Fluidic injection decreases momentum thrust by creating axial velocity deficits in the region of injection. Pressure thrust is increased from local pressure rise from the injectors and area control at the nozzle exit. Fluidic injection increases total thrust as the pressure thrust gains are greater than the momentum thrust deficits. Specific thrust is reduced slightly with 6 injectors being a more efficient use of the injection air with greater noise reduction.
2018 AIAA Aerospace Sciences Meeting | 2018
Daniel R. Cuppoletti; Ephraim Gutmark; Haukur Hafsteinsson; Lars-Erik Eriksson
A novel application of fluidic injection was developed to investigate and understand the effects of discrete fluidic injection internal to the jet nozzle. Various injection locations, angles, and conditions were studied resulting in unique acoustic behavior and flow field modifications. For most conditions the acoustics are relatively unaffected or increased, but for very specific conditions noise was drastically decreased. For optimized conditions the shock noise was completely eliminated and in other cases a jet instability was generated that significantly decreased high frequency noise. Measurements of the velocity field indicated that shock interaction due to shocks from the injection jet interact with the primary jet shocks, and significantly reduce the shock strength, attributing massive shock noise reduction. Validation of the experimental results was achieved with LES, which provided additional insight into the shock suppression due to resolution of the flowfield internal to the nozzle. Optimal injection parameters resulted in reduction of OASPL of -7 dB at the upstream and downstream angles simultaneously through a combination of shock disruption and streamwise vorticity introduction. A new mechanism of supersonic jet noise reduction, destructive interference of the shock structure in the jet is reported.
52nd AIAA Aerospace Sciences Meeting - AIAA Science and Technology Forum and Exposition, SciTech 2014; National Harbor, MD; United States; 13 January 2014 through 17 January 2014 | 2014
Haukur Hafsteinsson; Lars-Erik Eriksson; Niklas Andersson; Daniel R. Cuppoletti; Ephraim Gutmark; Erik Prisell
In the presented study the time-dependent flow features of a supersonic jet with and without steady microjet injection are investigated. The flow field is sampled at various axial and radial locations in the supersonic region and its near surroundings. The jet is emitted from a sharp-throat converging diverging nozzle operated at a nozzle pressure ratio (NPR) of 4.0, which gives a jet exitMach number of M = 1.56 and a Reynolds number of Re = 2.46×106 based on the jet exit diameter. Large Eddy Simulation (LES) is used to obtain the fully three dimensional instantenous turbulent flow field and the Kirchhoff surface integral method is applied to obtain the far-field radiated noise. Both the near-field flow dynamics and the far-field noise obtained from the LES are in good agreement with experimental data. The noise components in the far-field noise are identified and compared with the spectra obtained from the probe-locations within the jet. The effect of micro-jet injection on the spectral characteristics within the jet and the far-field noise is analyzed. The screech tone appearing in the far-field noise is clearly established also in the jet-plume. Two point cross-correlations within and outside the supersonic region of the jet-plume revealed two types of moving phenomenon. These where found to be turbulent structures and acoustic waves. The odd thing at first sight was that the acoustic waves appeared to be traveling upstream within the supersonic region, which sounds contradictory. However, it was showed that the acoustic wave was traveling in the form of a helical mode which allows the phase velocity of the pressure wave to be higher than the flow velocity, even at supersonic flow speeds. The fluidic injection was shown to disrupt and weaken the helical pattern which resulted in a lower far-field screech tone noise. Upon sufficient dissipation of the injection, a few nozzle diameters downstream of the nozzle exit, the helical pattern picks up strength again. However, the feed-back loop mechanism associated with the screech tone is still disabled.