Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haushila Prasad Pandey is active.

Publication


Featured researches published by Haushila Prasad Pandey.


Free Radical Research | 2008

The involvement of nitric oxide in maneb-and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes

Israr Ahmad; Ashutosh Kumar; Smriti Shukla; Haushila Prasad Pandey; Chetna Singh

Oxidative stress plays a crucial role in the manifestations of maneb (MB) and paraquat (PQ)-induced toxicity including MB+PQ-induced Parkinsons disease (PD). Polymorphonuclear leukocytes (PMNs) actively participate in the oxidative stress-mediated inflammation and organ toxicity. The present study was undertaken to investigate the MB- and/or PQ-induced alterations in the indices of oxidative stress in rat PMNs. Animals were treated with or without MB and/or PQ in an exposure time dependent manner. In some sets of experiments, the animals were pre-treated with NOS inhibitors NG-nitro-L-arginine methyl ester (L-NAME) and aminoguanidine (AG) along with respective controls. A significant increase in myeloperoxidase (MPO), superoxide dismutase (SOD), nitric oxide, iNOS expression and lipid peroxidation (LPO) was observed in PMNs of MB- and/or PQ-treated animals, while catalase and glutathione S-transferase (GST) activities were attenuated. L-NAME and AG significantly reduced the augmented nitrite content, iNOS expression and MPO activity to control level in MB and PQ exposed animals. Although the augmented LPO was also reduced significantly in L-NAME and AG treated rat PMNs, the level was still higher as compared with controls. Alterations induced in SOD and GST activities were not affected by NOS inhibitors. The results thus suggest that MB and/or PQ induce iNOS-mediated nitric oxide production, which in turn increases MPO activity and lipid peroxidation, thereby oxidative stress.


Food and Chemical Toxicology | 2014

Role of oxidative stress in Deoxynivalenol induced toxicity.

Sakshi Mishra; Premendra D. Dwivedi; Haushila Prasad Pandey; Mukul Das

Deoxynivalenol (DON) is a Fusarium toxin that causes a variety of toxic effects with symptoms such as diarrhoea and low weight gain. To date, no review has addressed the toxicity of DON in relation to oxidative stress. The focus of this article is primarily intended to summarize the information associated with oxidative stress as a plausible mechanism for DON-induced toxicity. The present review shows that over the past two decades, several investigators have documented the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in oxidative stress as a result of DON treatment and have correlated them with various types of toxicity. The evidence for induction of an oxidative stress response resulting from DON exposure has been more focused on in vitro models and is relatively lacking in in vivo studies. Hence, more emphasis should be laid on in vivo investigations with doses that are commonly encountered in food products. Since DON is commonly found in food and feed, the cellular effects of this toxin in relation to oxidative stress, as well as effective measures to combat its toxicity, are important aspects to be considered for future studies.


Chemico-Biological Interactions | 2013

Biochemical and molecular mechanisms of N-acetyl cysteine and silymarin-mediated protection against maneb- and paraquat-induced hepatotoxicity in rats

Israr Ahmad; Smriti Shukla; Ashutosh Kumar; Brajesh K. Singh; Vinod Kumar; Amit Kumar Chauhan; Dhirendra Singh; Haushila Prasad Pandey; Chetna Singh

Oxidative stress is one of the major players in the pathogenesis of maneb (MB) and paraquat (PQ)-induced disorders. N-acetyl cysteine (NAC), a glutathione (GSH) precursor and silymarin (SIL), a naturally occurring antioxidant, encounter oxidative stress-mediated cellular damage. The present study was aimed to investigate the effects of NAC and SIL against MB and/or PQ-induced hepatotoxicity in rats. The levels of hepatotoxicity markers - alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and total bilirubin, histological changes, oxidative stress indices, phase I and phase II xenobiotic metabolizing enzymes - cytochrome P450 (CYP) and glutathione S-transferase (GST) and pro-inflammatory molecules - inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured in animals treated with MB and/or PQ in the presence or absence of NAC and SIL. MB and/or PQ augmented ALT, AST, total bilirubin, lipid peroxidation and nitrite contents and catalytic activities of superoxide dismutase and glutathione peroxidase however, the GSH content was attenuated. NAC and SIL restored the above-mentioned alterations towards basal levels but the restorations were more pronounced in SIL treated groups. Similarly, MB and/or PQ-mediated histopathological symptoms and changes in the catalytic activities/expressions of CYP1A2, CYP2E1, iNOS, TNF-α, and IL-1β were alleviated by NAC and SIL. Conversely, MB and/or PQ-induced GSTA4-4 expression/activity was further increased by NAC/SIL and glutathione reductase activity was also increased. The results obtained thus suggest that NAC and SIL protect MB and/or PQ-induced hepatotoxicity by reducing oxidative stress, inflammation and by modulating xenobitic metabolizing machinery and SIL seems to be more effective.


Brain Research | 2012

Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity.

Ashutosh Kumar; Brajesh Kumar Singh; Israr Ahmad; Smriti Shukla; Devendra Kumar Patel; Garima Srivastava; Vinod Kumar; Haushila Prasad Pandey; Chetna Singh

An association between excessive zinc (Zn) accumulation in brain and incidences of Parkinsons disease (PD) has been shown in several epidemiological and experimental investigations. The involvement of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and glutathione (GSH) in the pathogenesis of PD has also been proposed in a few studies. Despite the implicated role of oxidative stress in PD, the entire mechanism of Zn-induced dopaminergic neurodegeneration has not yet been clearly understood. The present study aimed to investigate the involvement of NADPH oxidase and GSH in Zn-induced dopaminergic neurodegeneration and also to assess its similarity with paraquat (PQ)-induced rat model of PD. Male Wistar rats were treated either with Zn (20 mg/kg; i.p.) or PQ (5 mg/kg; i.p.) in the presence and absence of NADPH oxidase inhibitor, apocynin (10 mg/kg; i.p.) and a GSH precursor, N-acetyl cysteine (NAC; 200 mg/kg; i.p.) either alone or in combination along with the respective controls. Apocynin and/or NAC pre-treatment significantly alleviated Zn- and PQ-induced changes in neurobehavioral deficits, number of dopaminergic neurons and contents of the striatal dopamine and its metabolites. Apocynin and/or NAC also mitigated Zn- and PQ-induced alterations in oxidative stress, NADPH oxidase activation and cytochrome c release, caspases-9 and -3 activation and CD11b expression. The results obtained thus suggest that Zn induces oxidative stress via the activation of NADPH oxidase and depletion of GSH, which in turn activate the apoptotic machinery leading to dopaminergic neurodegeneration similar to PQ.


Free Radical Research | 2010

Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats

Ashutosh Kumar; Israr Ahmad; Smriti Shukla; Brajesh K. Singh; Devendra Kumar Patel; Haushila Prasad Pandey; Chetna Singh

Abstract Oxidative stress is implicated in Parkinsons disease (PD). Metallothioneins (MT), cytochrome P450 IIE1 (CYP2E1) and glutathione S-transferases alpha4-4 (GSTA4-4) are involved in oxidative stress-mediated damage. Altered dopamine transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2) are also documented in PD. The present study was undertaken to investigate the effect of Zn and PQ co-exposure on neurodegeneration in rats. A significant reduction was observed in spontaneous locomotor activity (SLA), striatal dopamine (DA) levels, tyrosine hydroxylase (TH) immunoreactivity, glutathione reductase (GR) and catalase activity along with increased lipid peroxidation (LPO) and glutathione peroxidase (GPx) activity after Zn and/or PQ exposure. Zn and/or PQ exposure increased gene expression of DAT, CYP2E1, GSTA4-4, MT-I and MT-II, but reduced the expression of VMAT-2. Protein expression analysis of TH, VMAT-2 and DAT showed results similar to those obtained with gene expression study. Zn and PQ co-exposure caused a more pronounced effect than that of individual exposure. The results obtained in this study suggest that, similar to PQ, Zn induced neurodegeneration via alterations in oxidative stress and expression of the above-mentioned genes. However, the effect of Zn+PQ was only slightly higher than that of alone, indicating that probably Zn and PQ follow some different molecular events leading to neurodegeneration.


Journal of Medical Microbiology | 2002

NADH-oxidase, NADPH-oxidase and myeloperoxidase activity of visceral leishmaniasis patients

Promod Kumar; Kalpana Pai; Haushila Prasad Pandey; Shyam Sundar

It is believed that the enhanced capability of activated macrophages to resist infection is related to the remarkable increase in the production of oxygen metabolites in response to phagocytosis. Both the production of H2O2 and the oxidation of NAD(P)H are directly dependent upon NAD(P)H-oxidase. It has been established that the respiratory burst is due to activation of NAD(P)H-oxidase localised in the plasmalemma. Myeloperoxidase is believed to be involved in augmenting the cytotoxic activity of H2O2. Low NADH-oxidase, NADPH-oxidase and myeloperoxidase activity were observed in monocytes of patients with active visceral leishmaniasis as compared with healthy controls. These results suggest that low NADH-oxidase, NADPH-oxidase and myeloperoxidase activities may account for persistence of Leishmania parasites in visceral leishmaniasis.


Phytomedicine | 2013

Anti-secretory and cyto-protective effects of chebulinic acid isolated from the fruits of Terminalia chebula on gastric ulcers.

Vaibhav Mishra; Manali Agrawal; Samuel Adetunji Onasanwo; Gaurav Madhur; Preeti Rastogi; Haushila Prasad Pandey; Gautam Palit; Tadigoppula Narender

In continuation of our drug discovery program on Indian medicinal plants, the gastro protective mechanism of chebulinic acid isolated from Terminalia chebula fruit was investigated. Chebulinic acid was evaluated against cold restraint (CRU), aspirin (AS), alcohol (AL) and pyloric ligation (PL) induced gastric ulcer models in rats. Potential anti-ulcer activity of chebulinic acid was observed against CRU (62.9%), AS (55.3%), AL (80.67%) and PL (66.63%) induced ulcer models. The reference drug omeprazole (10 mg/kg, p.o.) showed 77.73% protection against CRU, 58.30% against AS and 70.80% against PL model. Sucralfate, another reference drug (500 mg/kg, p.o.) showed 65.67% protection in AL induced ulcer model. Chebulinic acid significantly reduced free acidity (48.82%), total acidity (38.29%) and upregulated mucin secretion by 59.75% respectively. Further, chebulinic acid significantly inhibited H(+) K(+)-ATPase activity in vitro with IC50 of 65.01 μg/ml as compared to the IC50 value of omeprazole (30.24 μg/ml) confirming its anti-secretory activity.


Archives of Toxicology | 2010

IL-6 receptor-mediated lung Th2 cytokine networking in silica-induced pulmonary fibrosis

Shambhoo Sharan Tripathi; Vani Mishra; Mamta Shukla; Mukesh Verma; Bhushan Pradosh Chaudhury; Pradeep Kumar; Jasmeet Kaur Chhabra; Haushila Prasad Pandey; Bholanath Paul

Pulmonary silicosis is a deadly disease which kills thousands of people every year worldwide. The disease initially develops as an inflammatory response with recruitment of inflammatory cells into the lung controlled by multiple cytokines. The question whether these cytokines exert biological functions through signal transducing pathway remains unanswered along with the potential role of interleukin-6 receptor α (IL-6Rα) in regulating inflammatory cytokines. We aimed to assess the status of signal transducers and activator of transcription (Stat3), suppressor of cytokine signalling 3(Socs3) and inflammatory cytokines in airways of silica-exposed mice, and their relationship with IL-6Rα. Silica-exposed and silica-exposed IL-6Rα gene knockdown Balb/c mice were used in the study. Lung function was measured by plethysmography, mRNA expression of cytokines and signal molecules by qRT2-PCR and lung architecture by histopathology; T helper cell-type 2 (Th2) cytokines in broncho-alveolar lavage fluids were evaluated by ELISA and hydroxyproline in lung by colorimetry. Elevated levels of collagen deposition, signs of lung fibrosis, infiltration of inflammatory cells and presence of exfoliated mucosa in the lung of silica-exposed mice with concurrent increase in methacholine-induced specific resistance of airways were observed on day 60 post-exposure. In parallel, heightened expression of Th2 cytokines (IL-4, IL-5, IL-6) and signal molecules (Stat3 and Socs3) were observed in the airways of silica-exposed mice. Th1 (IL-1β and TNF-α) cytokines are underexpressed in majority of the airways tissues of silica-exposed mice. Silencing IL-6Rα in lung of silica-exposed mice down regulated the hypermorphic mRNA pool of potential Th2 cytokines and signal molecules. Hypermorphic expression of Th2 cytokines and signal molecules in airways of silica-exposed mice are mediated through IL-6Rα.


Toxicology and Applied Pharmacology | 2014

Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

Sakshi Mishra; Anurag Tripathi; Bhushan P. Chaudhari; Premendra D. Dwivedi; Haushila Prasad Pandey; Mukul Das

Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84-672nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672nmol) caused significant enhancement in [(3)H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168nmol) showed no tumorigenesis after 24weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyers patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential.


Chemico-Biological Interactions | 2010

Maneb and paraquat-induced modulation of toxicant responsive genes in the rat liver: Comparison with polymorphonuclear leukocytes

Israr Ahmad; Smriti Shukla; Ashutosh Kumar; Brajesh K. Singh; Devendra Kumar Patel; Haushila Prasad Pandey; Chetna Singh

Experimental studies have shown that toxicant responsive genes, cytochrome P450s (CYPs) and glutathione S-transferases (GSTs) play a critical role in pesticide-induced toxicity. CYPs play pro-oxidant role and GSTs offer protection in maneb (MB) and paraquat (PQ)-induced brain and lung toxicities. The present study aimed to investigate the effect of repeated exposures of MB and/or PQ on lipid peroxidation (LPO), glutathione content (GSH) and toxicant responsive genes, i.e., CYP1A1, 1A2, 2E1, GSTA4-4, GSTA1-1 and GSTA3-3 in the liver and to correlate the same with polymorphonuclear leukocytes (PMNs). A significant augmentation in LPO and reduction in GSH content was observed in a time of exposure dependent manner in the liver and PMNs of MB and/or PQ treated animals. The expression and catalytic activity of CYP2E1 and GSTA4-4 were significantly increased following MB and/or PQ exposure both in the liver and PMNs. Although the expression of GSTA3-3 was increased, the expression of GSTA1-1 was unaltered after MB and/or PQ treatment in both the liver and PMNs. MB augmented the expression and catalytic activity of CYP1A1 in the liver, however, CYP1A2 was unaffected. PQ, on the other hand, significantly increased hepatic CYP1A2 expression and catalytic activity. MB and/or PQ did not produce any significant changes in CYP1A1 and CYP1A2 in PMNs. The results of the study thus demonstrate that MB and PQ differentially regulate hepatic CYP1A1 and CYP1A2 while LPO, GSH, CYP2E1, GSTA4-4 and GSTA3-3 are modulated in the similar fashions both in the liver and PMNs.

Collaboration


Dive into the Haushila Prasad Pandey's collaboration.

Top Co-Authors

Avatar

Chetna Singh

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Smriti Shukla

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar

Israr Ahmad

Indian Institute of Toxicology Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shyam Sundar

Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Singh Rh

Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Vaibhav Mishra

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Alok K. Singh

Rajiv Gandhi Institute of Petroleum Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kalpana Pai

Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge