Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather B. Franz is active.

Publication


Featured researches published by Heather B. Franz.


Science | 2013

Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover

L. A. Leshin; Paul R. Mahaffy; C. R. Webster; Michel Cabane; Patrice Coll; P. G. Conrad; P. D. Archer; Sushil K. Atreya; A. E. Brunner; Arnaud Buch; Jennifer L. Eigenbrode; G. J. Flesch; Heather B. Franz; Caroline Freissinet; D. P. Glavin; A. C. McAdam; Kristen E. Miller; D. W. Ming; Richard V. Morris; Rafael Navarro-González; Paul B. Niles; Tobias Owen; S. W. Squyres; Andrew Steele; Jennifer C. Stern; Roger E. Summons; Dawn Y. Sumner; Brad Sutter; Cyril Szopa; Samuel Teinturier

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.


Science | 2015

The imprint of atmospheric evolution in the D/H of hesperian clay minerals on Mars

Paul R. Mahaffy; C. R. Webster; Jennifer C. Stern; A. E. Brunner; Sushil K. Atreya; P. G. Conrad; S. Domagal-Goldman; Jennifer L. Eigenbrode; G. J. Flesch; Lance E. Christensen; Heather B. Franz; D. P. Glavin; John H. Jones; A. C. McAdam; A. A. Pavlov; M. Trainer; K. Williford

Of water and methane on Mars The Curiosity rover has been collecting data for the past 2 years, since its delivery to Mars (see the Perspective by Zahnle). Many studies now suggest that many millions of years ago, Mars was warmer and wetter than it is today. But those conditions required an atmosphere that seems to have vanished. Using the Curiosity rover, Mahaffy et al. measured the ratio of deuterium to hydrogen in clays that were formed 3.0 to 3.7 billion years ago. Hydrogen escapes more readily than deuterium, so this ratio offers a snapshot measure of the ancient atmosphere that can help constrain when and how it disappeared. Most methane on Earth has a biological origin, so planetary scientists have keenly pursued its detection in the martian atmosphere as well. Now, Webster et al. have precisely confirmed the presence of methane in the martian atmosphere with the instruments aboard the Curiosity rover at Gale crater. Science, this issue p. 412, p. 415; see also p. 370 A measurement with the Curiosity rover probes the Hesperian era and constrains the timing of hydrogen loss. [Also see Perspective by Zahnle] The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity’s Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.


Journal of Geophysical Research | 2014

Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

P. D. Archer; Heather B. Franz; Brad Sutter; Ricardo Arevalo; Patrice Coll; Jennifer L. Eigenbrode; Daniel P. Glavin; John Jones; Laurie A. Leshin; Paul R. Mahaffy; A. C. McAdam; Christopher P. McKay; Douglas W. Ming; Richard V. Morris; Rafael Navarro-González; Paul B. Niles; Alex Pavlov; Steven W. Squyres; Jennifer C. Stern; Andrew Steele; James J. Wray

The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars

Jennifer C. Stern; Brad Sutter; Caroline Freissinet; Rafael Navarro-González; Christopher P. McKay; P. Douglas Archer; Arnaud Buch; A. E. Brunner; Patrice Coll; Jennifer L. Eigenbrode; Alberto G. Fairén; Heather B. Franz; Daniel P. Glavin; S. Kashyap; A. C. McAdam; Douglas W. Ming; Andrew Steele; Cyril Szopa; James J. Wray; F. Javier Martin-Torres; María-Paz Zorzano; P. G. Conrad; Paul R. Mahaffy

Significance We present data supporting the presence of an indigenous source of fixed nitrogen on the surface of Mars in the form of nitrate. This fixed nitrogen may indicate the first stage in development of a primitive nitrogen cycle on the surface of ancient Mars and would have provided a biochemically accessible source of nitrogen. The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.


Nature | 2014

Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars

Heather B. Franz; James Farquhar; James M. D. Day; Rita C. Economos; Kevin D. McKeegan; Axel K. Schmitt; Anthony J. Irving; Joost Hoek; James W. Dottin

The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet’s history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.


Journal of Geophysical Research | 2014

Sulfur‐bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

A. C. McAdam; Heather B. Franz; Brad Sutter; P. D. Archer; Caroline Freissinet; Jennifer L. Eigenbrode; Douglas W. Ming; Sushil K. Atreya; David L. Bish; David F. Blake; Hannah E. Bower; A. E. Brunner; Arnaud Buch; Daniel P. Glavin; John P. Grotzinger; Paul R. Mahaffy; Scott M. McLennan; Richard V. Morris; Richard Navarro-González; E. B. Rampe; Steven W. Squyres; Andrew Steele; Jennifer C. Stern; Dawn Y. Sumner; James J. Wray

The Sample Analysis at Mars (SAM) instrument suite detected SO2, H2S, OCS, and CS2 from ~450 to 800°C during evolved gas analysis (EGA) of materials from the Rocknest aeolian deposit in Gale Crater, Mars. This was the first detection of evolved sulfur species from a Martian surface sample during in situ EGA. SO2 (~3–22 µmol) is consistent with the thermal decomposition of Fe sulfates or Ca sulfites, or evolution/desorption from sulfur-bearing amorphous phases. Reactions between reduced sulfur phases such as sulfides and evolved O2 or H2O in the SAM oven are another candidate SO2 source. H2S (~41–109 nmol) is consistent with interactions of H2O, H2 and/or HCl with reduced sulfur phases and/or SO2 in the SAM oven. OCS (~1–5 nmol) and CS2 (~0.2–1 nmol) are likely derived from reactions between carbon-bearing compounds and reduced sulfur. Sulfates and sulfites indicate some aqueous interactions, although not necessarily at the Rocknest site; Fe sulfates imply interaction with acid solutions whereas Ca sulfites can form from acidic to near-neutral solutions. Sulfides in the Rocknest materials suggest input from materials originally deposited in a reducing environment or from detrital sulfides from an igneous source. The presence of sulfides also suggests that the materials have not been extensively altered by oxidative aqueous weathering. The possibility of both reduced and oxidized sulfur compounds in the deposit indicates a nonequilibrium assemblage. Understanding the sulfur mineralogy in Rocknest materials, which exhibit chemical similarities to basaltic fines analyzed elsewhere on Mars, can provide insight in to the origin and alteration history of Martian surface materials.


Geophysical Research Letters | 2013

Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss.

Sushil K. Atreya; M. Trainer; Heather B. Franz; Michael H. Wong; Heidi L. K. Manning; C. A. Malespin; Paul R. Mahaffy; P. G. Conrad; A. E. Brunner; Laurie A. Leshin; John H. Jones; C. R. Webster; Tobias Owen; Robert O. Pepin; Rafael Navarro-González

[1] The quadrupole mass spectrometer of the Sample Analysis at Mars (SAM) instrument on Curiosity rover has made the first high-precision measurement of the nonradiogenic argon isotope ratio in the atmosphere of Mars. The resulting value of 36Ar/38Ar = 4.2 ± 0.1 is highly significant for it provides excellent evidence that “Mars” meteorites are indeed of Martian origin, and it points to a significant loss of argon of at least 50% and perhaps as high as 85–95% from the atmosphere of Mars in the past 4 billion years. Taken together with the isotopic fractionations in N, C, H, and O measured by SAM, these results imply a substantial loss of atmosphere from Mars in the posthydrodynamic escape phase.


Journal of Geophysical Research | 2017

Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune

Brad Sutter; A. C. McAdam; Paul R. Mahaffy; D. W. Ming; Kenneth S. Edgett; E. B. Rampe; Jennifer L. Eigenbrode; Heather B. Franz; C. Freissinet; John P. Grotzinger; Andrew Steele; Christopher H. House; P. D. Archer; C. A. Malespin; Rafael Navarro-González; J. C. Stern; James F. Bell; F. Calef; R. Gellert; D. P. Glavin; Lucy M. Thompson; Albert S. Yen

The Sample Analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H2, SO2, H2S, NO, CO2, CO, O2 and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO2 (160 ± 248 - 2373 ± 820 μgC(CO2)/g), and CO (11 ± 3 - 320 ± 130 μgC(CO)/g) suggest organic-C is present in Gale Crater materials. Five samples evolved CO2 at temperatures consistent with carbonate (0.32± 0.05 - 0.70± 0.1 wt.% CO3). Evolved NO amounts to 0.002 ± 0.007 - 0.06 ± 0.03 wt.% NO3. Evolution of O2 suggests oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025 - 1.05 ± 0.44wt. % ClO4) are present while SO2 evolution indicates the presence of crystalline and/or poorly crystalline Fe- and Mg-sulfate and possibly sulfide. Evolved H2O (0.9 ± 0.3 - 2.5 ± 1.6 wt.% H2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2 and H2S suggest reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, carbonate). SAM results coupled with CheMin mineralogical and APXS elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic-C to support a small microbial population.


Science | 2018

Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars

Jennifer L. Eigenbrode; Roger E. Summons; Andrew Steele; Caroline Freissinet; Maeva Millan; Rafael Navarro-González; Brad Sutter; A. C. McAdam; Heather B. Franz; Daniel P. Glavin; P. D. Archer; Paul R. Mahaffy; P. G. Conrad; Joel A. Hurowitz; John P. Grotzinger; Sanjeev Gupta; Douglas W. Ming; Dawn Y. Sumner; Cyril Szopa; C. A. Malespin; Arnaud Buch; Patrice Coll

Measuring martian organics and methane The Curiosity rover has been sampling on Mars for the past 5 years (see the Perspective by ten Kate). Eigenbrode et al. used two instruments in the SAM (Sample Analysis at Mars) suite to catch traces of complex organics preserved in 3-billion-year-old sediments. Heating the sediments released an array of organics and volatiles reminiscent of organic-rich sedimentary rock found on Earth. Most methane on Earth is produced by biological sources, but numerous abiotic processes have been proposed to explain martian methane. Webster et al. report atmospheric measurements of methane covering 3 martian years and found that the background level varies with the local seasons. The seasonal variation provides an important clue for determining the origin of martian methane. Science, this issue p. 1096, p. 1093; see also p. 1068 Complex organic compounds may have been detected by the Curiosity rover in ancient martian sedimentary rocks. Establishing the presence and state of organic matter, including its possible biosignatures, in martian materials has been an elusive quest, despite limited reports of the existence of organic matter on Mars. We report the in situ detection of organic matter preserved in lacustrine mudstones at the base of the ~3.5-billion-year-old Murray formation at Pahrump Hills, Gale crater, by the Sample Analysis at Mars instrument suite onboard the Curiosity rover. Diverse pyrolysis products, including thiophenic, aromatic, and aliphatic compounds released at high temperatures (500° to 820°C), were directly detected by evolved gas analysis. Thiophenes were also observed by gas chromatography–mass spectrometry. Their presence suggests that sulfurization aided organic matter preservation. At least 50 nanomoles of organic carbon persists, probably as macromolecules containing 5% carbon as organic sulfur molecules.


ieee aerospace conference | 2012

Volatile Analysis by Pyrolysis of Regolith for planetary resource exploration

Daniel P. Glavin; C. A. Malespin; Inge L. ten Kate; Stephanie A. Getty; Vincent Holmes; Erik Mumm; Heather B. Franz; Marvin Noreiga; Nick Dobson; Adrian E. Southard; Steven Feng; Carl A. Kotecki; Jason P. Dworkin; Timothy D. Swindle; Jacob E. Bleacher; James William Rice; Paul R. Mahaffy

The extraction and identification of volatile resources that could be utilized by humans including water, oxygen, noble gases, and hydrocarbons on the Moon, Mars, and small planetary bodies will be critical for future long-term human exploration of these objects. Vacuum pyrolysis at elevated temperatures has been shown to be an efficient way to release volatiles trapped inside solid samples. In order to maximize the extraction of volatiles, including oxygen and noble gases from the breakdown of minerals, a pyrolysis temperature of 1400°C or higher is required, which greatly exceeds the maximum temperatures of current state-of-the-art flight pyrolysis instruments. Here we report on the recent optimization and field testing results of a high temperature pyrolysis oven and sample manipulation system coupled to a mass spectrometer instrument called Volatile Analysis by Pyrolysis of Regolith (VAPoR). VAPoR is capable of heating solid samples under vacuum to temperatures above 1300°C and determining the composition of volatiles released as a function of temperature.

Collaboration


Dive into the Heather B. Franz's collaboration.

Top Co-Authors

Avatar

Paul R. Mahaffy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. G. Conrad

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

A. C. McAdam

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rafael Navarro-González

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

C. A. Malespin

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer C. Stern

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Daniel P. Glavin

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge