Heather E. McDermid
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heather E. McDermid.
American Journal of Human Genetics | 2002
Heather E. McDermid; Bernice E. Morrow
The 22q11 region is involved in chromosomal rearrangements that lead to altered gene dosage, resulting in genomic disorders that are characterized by mental retardation and/or congenital malformations. Three such disorders-cat-eye syndrome (CES), der(22) syndrome, and velocardiofacial syndrome/DiGeorge syndrome (VCFS/DGS)-are associated with four, three, and one dose, respectively, of parts of 22q11. The critical region for CES lies centromeric to the deletion region of VCFS/DGS, although, in some cases, the extra material in CES extends across the VCFS/DGS region. The der(22) syndrome region overlaps both the CES region and the VCFS/DGS region. Molecular approaches have revealed a set of common chromosome breakpoints that are shared between the three disorders, implicating specific mechanisms that cause these rearrangements. Most VCFS/DGS and CES rearrangements are likely to occur by homologous recombination events between blocks of low-copy repeats (e.g., LCR22), whereas nonhomologous recombination mechanisms lead to the constitutional t(11;22) translocation. Meiotic nondisjunction events in carriers of the t(11;22) translocation can then lead to offspring with der(22) syndrome. The molecular basis of the clinical phenotype of these genomic disorders has also begun to be addressed. Analysis of both the genomic sequence for the 22q11 interval and the orthologous regions in the mouse has identified >24 genes that are shared between VCFS/DGS and der(22) syndrome and has identified 14 putative genes that are shared between CES and der(22) syndrome. The ability to manipulate the mouse genome aids in the identification of candidate genes in these three syndromes. Research on genomic disorders on 22q11 will continue to expand our knowledge of the mechanisms of chromosomal rearrangements and the molecular basis of their phenotypic consequences.
American Journal of Medical Genetics | 2001
Mary C. Phelan; R. Curtis Rogers; Robert Saul; Gail A. Stapleton; Kevin Sweet; Heather E. McDermid; Steven R. Shaw; Joanne Claytor; Jan Willis; Desmond P. Kelly
We have recently collected clinical information on 37 individuals with deletion of 22q13 and compared the features of these individuals with 24 previously reported cases. The features most frequently associated with this deletion are global developmental delay, generalized hypotonia, absent or severely delayed speech, and normal to advanced growth. Minor anomalies include dolicocephaly, abnormal ears, ptosis, dysplastic toenails, and relatively large hands. As with many terminal deletions involving pale G-band regions, the deletion can be extremely subtle and can go undetected on routine cytogenetic analysis. In fact, 32% of the individuals in our study had previous chromosome analyses that failed to detect the deletion. Eight of 37 individuals had deletion of 22q13 secondary to an unbalanced chromosome translocation. In the newborn, this deletion should be considered in cases of hypotonia for which other common causes have been excluded. In the older child, this syndrome should be suspected in individuals with normal growth, profound developmental delay, absent or delayed speech, and minor dysmorphic features. We recommend high-resolution chromosome analysis and fluorescence in situ hybridization studies, or molecular analysis to exclude this diagnosis.
American Journal of Human Genetics | 2005
Twila Yobb; Martin J. Somerville; Lionel Willatt; Helen V. Firth; Karen Harrison; Jennifer MacKenzie; Natasha Gallo; Bernice E. Morrow; Lisa G. Shaffer; Melanie Babcock; Judy Chernos; Francois P. Bernier; Kathy Sprysak; Jesse Christiansen; Shelagh Haase; Basil G. Elyas; Margaret Lilley; Steven Bamforth; Heather E. McDermid
22q11.2 microduplications of a 3-Mb region surrounded by low-copy repeats should be, theoretically, as frequent as the deletions of this region; however, few microduplications have been reported. We show that the phenotype of these patients with microduplications is extremely diverse, ranging from normal to behavioral abnormalities to multiple defects, only some of which are reminiscent of the 22q11.2 deletion syndrome. This diversity will make ascertainment difficult and will necessitate a rapid-screening method. We demonstrate the utility of four different screening methods. Although all the screening techniques give unique information, the efficiency of real-time polymerase chain reaction allowed the discovery of two 22q11.2 microduplications in a series of 275 females who tested negative for fragile X syndrome, thus widening the phenotypic diversity. Ascertainment of the fragile X-negative cohort was twice that of the cohort screened for the 22q11.2 deletion. We also report the first patient with a 22q11.2 triplication and show that this patients mother carries a 22q11.2 microduplication. We strongly recommend that other family members of patients with 22q11.2 microduplications also be tested, since we found several phenotypically normal parents who were carriers of the chromosomal abnormality.
American Journal of Human Genetics | 1994
N. J. Nesslinger; Jerome L. Gorski; T. W. Kurczynski; Stuart K. Shapira; J. Siegel-Bartelt; J. P. Dumanski; R. F. Cullen; B. N. French; Heather E. McDermid
We have studied seven patients who have chromosome 22q13.3 deletions as revealed by high-resolution cytogenetic analysis. Clinical evaluation of the patients revealed a common phenotype that includes generalized developmental delay, normal or accelerated growth, hypotonia, severe delays in expressive speech, and mild facial dysmorphic features. Dosage analysis using a series of genetically mapped probes showed that the proximal breakpoints of the deletions varied over approximately 13.8 cM, between loci D22S92 and D22S94. The most distally mapped locus, arylsulfatase A (ARSA), was deleted in all seven patients. Therefore, the smallest region of overlap (critical region) extends between locus D22S94 and a region distal to ARSA, a distance of > 25.5 cM.
Journal of Medical Genetics | 1997
Kimberly F. Doheny; Heather E. McDermid; Karen H. Harum; George H. Thomas; Gerald V. Raymond
Two unrelated patients with cryptic subtelomeric deletions of 22q13.3 were identified using FISH with the commercially available Oncor probe, D22S39. Proband 1 was found to have a derivative chromosome 22 resulting from the unbalanced segregation of a t(1;22)(q44;q13.32) in her mother. Additional FISH analysis of proband 1 and her mother placed the breakpoint on chromosome 22 in this family proximal to D22S55 and D22S39 and distal to D22S45. We have mapped D22S39 to within 170 kb of D22S21 using pulsed field gel electrophoresis. D22S21 is genetically mapped between D22S55 and D22S45. These data indicate that the deletion in proband 1 is smaller than in eight of nine reported del(22)(q13.3) patients. Probands 1 and 2 share features of hypotonia, developmental delay, and expressive language delay, also seen in previously reported del(22)(q13.3) patients, although proband 1 appears to be more mildly affected. Proband 1 is also trisomic for the region 1q44-->qter. This very small duplication has been previously reported only once and the patient had idiopathic mental retardation. This is the first report where 22q13.3 terminal deletion patients have been identified through the use of FISH, and the first report of a deletion of this region occurring because of missegregation of a parental balanced cryptic translocation. We feel that investigation of the frequency of del(22)(q13.3) in the idiopathic mentally retarded population is warranted and may be aided by the ability to use a commercially available probe (D22S39), which is already currently in use in a large number of cytogenetic laboratories.
European Journal of Human Genetics | 2008
Heather L. Wilson; John A. Crolla; Dena Walker; Lina Artifoni; Bruno Dallapiccola; Takako Takano; Pradeep Vasudevan; Shuwen Huang; Vivienne Maloney; Twila Yobb; Oliver Quarrell; Heather E. McDermid
The severe mental retardation and speech deficits associated with 22q13 terminal deletions have been attributed in large part to haploinsufficiency of SHANK3, which maps to all 22q13 terminal deletions, although more proximal genes are assumed to have minor effects. We report two children with interstitial deletions of 22q13 and two copies of SHANK3, but clinical features similar to the terminal 22q13 deletion syndrome, including mental retardation and severe speech delay. Both these interstitial deletions are completely contained within the largest terminal deletion, but do not overlap with the nine smallest terminal deletions. These interstitial deletions indicate that haploinsufficiency for 22q13 genes other than SHANK3 can have major effects on cognitive and language development. However, the relatively mild speech problems and normal cognitive abilities of a parent who transmitted her identical interstitial deletion to her more severely affected son suggests that the phenotype associated with this region may be more variable than terminal deletions and therefore contribute to the relative lack of correlation between clinical severity and size of terminal deletions. The phenotypic similarity between the interstitial deletions and non-overlapping small terminal 22q13 deletions emphasizes the general nonspecificity of the clinical picture of the 22q13 deletion syndrome and the importance of molecular analysis for diagnosis.
Chromosoma | 1993
John Locke; Heather E. McDermid
Previous estimates of the size ofDrosophila melanogaster chromosome4 have indicated that it is 1% to 4% of the genome or ∼6 Mb. We have used pulsed field gel electrophoresis (PFGE) to separate megabase-sized molecules ofD. melanogaster chromosomal DNA. Southern blots of these gels were probed with DNA fragments from thecubitus interruptus andzfh-2 genes, which are located on chromosome4. They each identify the same-sized distinct band that migrates at approximately 5.2 Mb in DNA preparations from the Kc cell line. We interpret this band to be intact chromosome4. In DNA obtained from embryos of variousD. melanogaster wild-type strains, this chromosome band showed strain-specific size variation that ranged from 4.5 to 5.2 Mb. TheD. melanogaster chromosome4 probes also identified a single, 2.4 Mb band in embryonic DNA fromDrosophila simulans. We conclude thatD. simulans chromosome4 is substantially smaller than that ofD. melanogaster, presumably owing to diffirences in the amount of heterochromatic DNA sequences. Our simple DNA preparation from embryos and PFGE conditions should permit preparative isolation of chromosome4 DNA and will facilitate the molecular mapping of this chromosome.
Journal of Molecular Evolution | 2005
Stephanie A. Maier; Julia R. Galellis; Heather E. McDermid
Adenosine deaminase (ADA) is a well-characterized enzyme involved in the depletion of adenosine levels. A group of proteins with similarity to ADA, the adenosine deaminase-related growth factors (ADGF; known as CECR1 in vertebrates), has been described recently in various organisms. We have determined the phylogenetic relationships of various gene products with significant amino acid similarity to ADA using parsimony and Bayesian methods, and discovered a novel paralogue, termed ADA-like (ADAL). The ADGF proteins share a novel amino acid motif, “MPKG,” within which the proline and lysine residues are also conserved in the ADAL and ADA subfamilies. The significance of this new domain is unknown, but it is located just upstream of two ADA catalytic residues, of which all eight are conserved among the ADGF and ADAL proteins. This conservation suggests that ADGF and ADAL may share the same catalytic function as ADA, which has been proven for some ADGF members. These analyses also revealed that some genes previously thought to be classic ADAs are instead ADAL or ADGFs. We here define the ADGF, ADAL, ADA, adenine deaminase (ADE), and AMP deaminase (AMPD) groups as subfamilies of the adenyl-deaminase family. The availability of genomic data for the members of this family allowed us to reconstruct the intron evolution within the phylogeny and strengthen the introns-late hypothesis of the synthetic introns theory. This study shows that ADA activity is clearly more complex than once thought, perhaps involving a delicately balanced pattern of temporal and spatial expression of a number of paralogous proteins.
Gene | 2001
Stephanie A. Maier; Lynn Podemski; Sean W. Graham; Heather E. McDermid; John Locke
A novel family of growth factors, with sequence similarity to adenosine deaminase, has been identified in various organisms including flesh fly, tsetse fly, sand fly, mollusk and human. The human homologue, CECR1, is a candidate gene for the genetic disorder cat eye syndrome. Here, we describe six members of this growth factor family in Drosophila and two in vertebrates. The six Drosophila genes, named adenosine deaminase-related growth factors (ADGF), are found at three different chromosomal locations, with one singleton, two in an inverted orientation, and three in a tandem arrangement. These genes show distinct patterns of expression as measured by RT-PCR and Northern blots, indicating gene-specific function. The presence of six ADGF genes in the Drosophila genome suggests that gene duplication and divergence has been important for these growth factors in insect development. Phylogenetic analysis of the 14 extant ADGF-like gene products shows there are at least three major groups, two of which are found in Drosophila. The third appears specific to the vertebrate line. Seven gene duplications are inferred among the ADGF-like genes, most of which occurred long before the origin of Drosophila. Our analysis predicts the existence of several other unsampled ADGF-like genes, both within the species examined here, and in other related invertebrates.
Birth Defects Research Part A-clinical and Molecular Teratology | 2010
Nicholas A. Fairbridge; Christine E. Dawe; Farshad H. Niri; Megan K. Kooistra; Kirst King-Jones; Heather E. McDermid
BACKGROUND Over 200 mouse genes are associated with neural tube defects (NTDs), including Cecr2, the bromodomain-containing subunit of the CERF chromatin remodeling complex. METHODS Gene-trap mutation Cecr2(Gt45Bic) results in 74% exencephaly (equivalent of human anencephaly) on the BALB/c strain. Gene expression altered during cranial neural tube closure by the Cecr2 mutation was identified through microarray analysis of 11-14 somites stage Cecr2(Gt45Bic)embryos. RESULTS Analysis of Affymetrix Mouse 430 2.0 chips detected 60 transcripts up-regulated and 54 transcripts down-regulated in the Cecr2(Gt45Bic) embryos (fold > 1.5, p < 0.05). The Cecr2 transcript was reduced only approximately 7- to 14-fold from normal levels, suggesting the Cecr2(Gt45Bic) is a hypomorphic mutation. We therefore generated a novel Cecr2 null allele (Cecr2 (tm1.1Hemc)). Resulting mutants displayed a stronger penetrance of exencephaly than Cecr2(Gt45Bic) in both BALB/c and FVB/N strains, in addition to midline facial clefts and forebrain encephalocele in the FVB/N strain. The Cecr2 transcript is reduced 260-fold in the Cecr2(tm1.1Hemc) line. Subsequent qRT-PCR using Cecr2 (tm1.1Hemc) mutant heads confirmed downregulation of transcription factors Alx1/Cart1, Dlx5, Eya1, and Six1. CONCLUSIONS As both Alx1/Cart1 and Dlx5 mouse mutations result in exencephaly, we hypothesize that changes in expression of these mesenchymal/ectodermal transcription factors may contribute to NTDs associated with Cecr2.