Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather E. Wheeler is active.

Publication


Featured researches published by Heather E. Wheeler.


Nature Reviews Genetics | 2013

Cancer pharmacogenomics: strategies and challenges

Heather E. Wheeler; Michael L. Maitland; M. Eileen Dolan; Nancy J. Cox; Mark J. Ratain

Genetic variation influences the response of an individual to drug treatments. Understanding this variation has the potential to make therapy safer and more effective by determining selection and dosing of drugs for an individual patient. In the context of cancer, tumours may have specific disease-defining mutations, but a patients germline genetic variation will also affect drug response (both efficacy and toxicity), and here we focus on how to study this variation. Advances in sequencing technologies, statistical genetics analysis methods and clinical trial designs have shown promise for the discovery of variants associated with drug response. We discuss the application of germline genetics analysis methods to cancer pharmacogenomics with a focus on the special considerations for study design.


JAMA | 2015

Association of an inherited genetic variant with vincristine-related peripheral neuropathy in children with acute lymphoblastic leukemia.

Barthelemy Diouf; Kristine R. Crews; Glen Lew; Deqing Pei; Cheng Cheng; Ju Bao; Jie Zheng; Wenjian Yang; Yiping Fan; Heather E. Wheeler; Claudia Wing; Shannon M. Delaney; Masaaki Komatsu; Steven W. Paugh; Joseph R. McCorkle; Xiaomin Lu; Naomi J. Winick; William L. Carroll; Mignon L. Loh; Stephen P. Hunger; Meenakshi Devidas; Ching-Hon Pui; M. Eileen Dolan; Mary V. Relling; William E. Evans

IMPORTANCE With cure rates of childhood acute lymphoblastic leukemia (ALL) exceeding 85%, there is a need to mitigate treatment toxicities that can compromise quality of life, including peripheral neuropathy from vincristine treatment. OBJECTIVE To identify genetic germline variants associated with the occurrence or severity of vincristine-induced peripheral neuropathy in children with ALL. DESIGN, SETTING, AND PARTICIPANTS Genome-wide association study of patients in 1 of 2 prospective clinical trials for childhood ALL that included treatment with 36 to 39 doses of vincristine. Genome-wide single-nucleotide polymorphism (SNP) analysis and vincristine-induced peripheral neuropathy were assessed in 321 patients from whom DNA was available: 222 patients (median age, 6.0 years; range, 0.1-18.8 years) enrolled in 1994-1998 in the St Jude Childrens Research Hospital protocol Total XIIIB with toxic effects follow-up through January 2001, and 99 patients (median age, 11.4 years; range, 3.0-23.8 years) enrolled in 2007-2010 in the Childrens Oncology Group (COG) protocol AALL0433 with toxic effects follow-up through May 2011. Human leukemia cells and induced pluripotent stem cell neurons were used to assess the effects of lower CEP72 expression on vincristine sensitivity. EXPOSURE Treatment with vincristine at a dose of 1.5 or 2.0 mg/m2. MAIN OUTCOMES AND MEASURES Vincristine-induced peripheral neuropathy was assessed at clinic visits using National Cancer Institute criteria and prospectively graded as mild (grade 1), moderate (grade 2), serious/disabling (grade 3), or life threatening (grade 4). RESULTS Grade 2 to 4 vincristine-induced neuropathy during continuation therapy occurred in 28.8% of patients (64/222) in the St Jude cohort and in 22.2% (22/99) in the COG cohort. A SNP in the promoter region of the CEP72 gene, which encodes a centrosomal protein involved in microtubule formation, had a significant association with vincristine neuropathy (meta-analysis P = 6.3×10(-9)). This SNP had a minor allele frequency of 37% (235/642), with 50 of 321 patients (16%; 95% CI, 11.6%-19.5%) homozygous for the risk allele (TT at rs924607). Among patients with the high-risk CEP72 genotype (TT at rs924607), 28 of 50 (56%; 95% CI, 41.2%-70.0%) developed at least 1 episode of grade 2 to 4 neuropathy, a higher rate than in patients with the CEP72 CC or CT genotypes (58/271 patients [21.4%; 95% CI, 16.9%-26.7%]; P = 2.4×10(-6)). The severity of neuropathy was greater in patients homozygous for the TT genotype compared with patients with the CC or CT genotype (2.4-fold by Poisson regression [P<.0001] and 2.7-fold based on mean grade of neuropathy: 1.23 [95% CI, 0.74-1.72] vs 0.45 [95% CI, 0.3-0.6]; P = .004 by t test). Reducing CEP72 expression in human neurons and leukemia cells increased their sensitivity to vincristine. CONCLUSIONS AND RELEVANCE In this preliminary study of children with ALL, an inherited polymorphism in the promoter region of CEP72 was associated with increased risk and severity of vincristine-related peripheral neuropathy. If replicated in additional populations, this finding may provide a basis for safer dosing of this widely prescribed anticancer agent.


Pharmacogenomics | 2012

Lymphoblastoid cell lines in pharmacogenomic discovery and clinical translation

Heather E. Wheeler; M. Eileen Dolan

The ability to predict how an individual patient will respond to a particular treatment is the ambitious goal of personalized medicine. The genetic make up of an individual has been shown to play a role in drug response. For pharmacogenomic studies, human lymphoblastoid cell lines (LCLs) comprise a useful model system for identifying genetic variants associated with pharmacologic phenotypes. The availability of extensive genotype data for many panels of LCLs derived from individuals of diverse ancestry allows for the study of genetic variants contributing to interethnic and interindividual variation in susceptibility to drugs. Many genome-wide association studies for drug-induced phenotypes have been performed in LCLs, often incorporating gene-expression data. LCLs are also being used in follow-up studies to clinical findings to determine how an associated variant functions to affect phenotype. This review describes the most recent pharmacogenomic findings made in LCLs, including the translation of some findings to clinical cohorts.


PLOS Genetics | 2009

Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

Heather E. Wheeler; E. Jeffrey Metter; Toshiko Tanaka; Devin Absher; John P. Higgins; Jacob M. Zahn; Julie Wilhelmy; Ronald W. Davis; Andrew Singleton; Richard M. Myers; Luigi Ferrucci; Stuart K. Kim

Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6×10−5, empirical p = 0.01) that explains 1%–2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.


Philosophical Transactions of the Royal Society B | 2011

Genetics and genomics of human ageing

Heather E. Wheeler; Stuart K. Kim

Ageing in humans is typified by the decline of physiological functions in various organs and tissues leading to an increased probability of death. Some individuals delay, escape or survive much of this age-related decline and live past age 100. Studies comparing centenarians to average-aged individuals have found polymorphisms in genes that are associated with long life, including APOE and FOXOA3, which have been replicated many times. However, the associations found in humans account for small percentages of the variance in lifespan and many other gene associations have not been replicated in additional populations. Therefore, ageing is probably a highly polygenic trait. In humans, it is important to also consider differences in age-related decline that occur within and among tissues. Longitudinal data of age-related traits can be used in association studies to test for polymorphisms that predict how an individual will change over time. Transcriptional and genetic association studies of different tissues have revealed common and unique pathways involved in human ageing. Genomic convergence is a method that combines multiple types of functional genomic information such as transcriptional profiling, expression quantitative trait mapping and gene association. The genomic convergence approach has been used to implicate the gene MMP20 in human kidney ageing. New human genetics technologies are continually in development and may lead to additional breakthroughs in human ageing in the near future.


Clinical Cancer Research | 2012

Regulatory Polymorphisms in β-Tubulin IIa Are Associated with Paclitaxel-Induced Peripheral Neuropathy

Luis J. Leandro-García; Susanna Leskelä; Carlos Jara; Henrik Gréen; Elisabeth Åvall-Lundqvist; Heather E. Wheeler; M. Eileen Dolan; Lucía Inglada-Pérez; Agnieszka Maliszewska; Aguirre A. de Cubas; Iñaki Comino-Méndez; Veronika Mancikova; Alberto Cascón; Mercedes Robledo; Cristina Rodríguez-Antona

Purpose: Peripheral neuropathy is the dose-limiting toxicity of paclitaxel, a chemotherapeutic drug widely used to treat several solid tumors such as breast, lung, and ovary. The cytotoxic effect of paclitaxel is mediated through β-tubulin binding in the cellular microtubules. In this study, we investigated the association between paclitaxel neurotoxicity risk and regulatory genetic variants in β-tubulin genes. Experimental Design: We measured variation in gene expression of three β-tubulin isotypes (I, IVb, and IIa) in lymphocytes from 100 healthy volunteers, sequenced the promoter region to identify polymorphisms putatively influencing gene expression and assessed the transcription rate of the identified variants using luciferase assays. To determine whether the identified regulatory polymorphisms were associated with paclitaxel neurotoxicity, we genotyped them in 214 patients treated with paclitaxel. In addition, paclitaxel-induced cytotoxicity in lymphoblastoid cell lines was compared with β-tubulin expression as measured by Affymetrix exon array. Results: We found a 63-fold variation in β-tubulin IIa gene (TUBB2A) mRNA content and three polymorphisms located at −101, −112, and −157 in TUBB2A promoter correlated with increased mRNA levels. The −101 and −112 variants, in total linkage disequilibrium, conferred TUBB2A increased transcription rate. Furthermore, these variants protected from paclitaxel-induced peripheral neuropathy [HR, 0.62; 95% confidence interval (CI), 0.42–0.93; P = 0.021, multivariable analysis]. In addition, an inverse correlation between TUBB2A and paclitaxel-induced apoptosis (P = 0.001) in lymphoblastoid cell lines further supported that higher TUBB2A gene expression conferred lower paclitaxel sensitivity. Conclusions: This is the first study showing that paclitaxel neuropathy risk is influenced by polymorphisms regulating the expression of a β-tubulin gene. Clin Cancer Res; 18(16); 4441–8. ©2012 AACR.


Clinical Cancer Research | 2013

Integration of Cell Line and Clinical Trial Genome-Wide Analyses Supports a Polygenic Architecture of Paclitaxel-Induced Sensory Peripheral Neuropathy

Heather E. Wheeler; Eric R. Gamazon; Claudia Wing; Uchenna O. Njiaju; Chidiamara Njoku; Robert Michael Baldwin; Kouros Owzar; Chen Jiang; Dorothy Watson; Ivo Shterev; Michiaki Kubo; Hitoshi Zembutsu; Clifford A. Hudis; Lawrence N. Shulman; Yusuke Nakamura; Mark J. Ratain; Deanna L. Kroetz; Nancy J. Cox; M E Dolan

Purpose: We sought to show the relevance of a lymphoblastoid cell line (LCL) model in the discovery of clinically relevant genetic variants affecting chemotherapeutic response by comparing LCL genome-wide association study (GWAS) results to clinical GWAS results. Experimental Design: A GWAS of paclitaxel-induced cytotoxicity was conducted in 247 LCLs from the HapMap Project and compared with a GWAS of sensory peripheral neuropathy in patients with breast cancer (n = 855) treated with paclitaxel in the Cancer and Leukemia Group B (CALGB) 40101 trial. Significant enrichment was assessed by permutation resampling analysis. Results: We observed an enrichment of LCL cytotoxicity-associated single-nucleotide polymorphisms (SNP) in the sensory peripheral neuropathy-associated SNPs from the clinical trial with concordant allelic directions of effect (empirical P = 0.007). Of the 24 SNPs that overlap between the clinical trial (P < 0.05) and the preclinical cytotoxicity study (P < 0.001), 19 of them are expression quantitative trait loci (eQTL), which is a significant enrichment of this functional class (empirical P = 0.0447). One of these eQTLs is located in RFX2, which encodes a member of the DNA-binding regulatory factor X family. Decreased expression of this gene by siRNA resulted in increased sensitivity of Neuroscreen-1(NS-1; rat pheochromocytoma) cells to paclitaxel as measured by reduced neurite outgrowth and increased cytotoxicity, functionally validating the involvement of RFX2 in nerve cell response to paclitaxel. Conclusions: The enrichment results and functional example imply that cellular models of chemotherapeutic toxicity may capture components of the underlying polygenic architecture of related traits in patients. Clin Cancer Res; 19(2); 491–9. ©2012 AACR.


PLOS ONE | 2015

Modeling Chemotherapeutic Neurotoxicity with Human Induced Pluripotent Stem Cell-Derived Neuronal Cells

Heather E. Wheeler; Claudia Wing; Shannon M. Delaney; Masaaki Komatsu; M. Eileen Dolan

There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN), the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs) as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05). The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011). The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05), demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN.


Pharmacogenomics Journal | 2013

Genome-wide Meta-analysis Identifies Variants Associated with Platinating Agent Susceptibility Across Populations

Heather E. Wheeler; Eric R. Gamazon; Amy L. Stark; Peter H. O'Donnell; Lidija K. Gorsic; Rong Stephanie Huang; Nancy J. Cox; M E Dolan

Platinating agents are used in the treatment of many cancers, yet they can induce toxicities and resistance that limit their utility. Using previously published and additional world population panels of diverse ancestry totaling 608 lymphoblastoid cell lines (LCLs), we performed meta-analyses of over 3 million single-nucleotide polymorphisms (SNPs) for both carboplatin- and cisplatin-induced cytotoxicity. The most significant SNP in the carboplatin meta-analysis is located in an intron of NBAS (neuroblastoma amplified sequence; P=5.1 × 10−7). The most significant SNP in the cisplatin meta-analysis is upstream of KRT16P2 (P=5.8 × 10−7). We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Most of the variants that associate with platinum-induced cytotoxicity are polymorphic across multiple world populations; therefore, they could be tested in follow-up studies in diverse clinical populations. Seven genes previously implicated in platinating agent response, including BCL2 (B-cell CLL/lymphoma 2), GSTM1 (glutathione S-transferase mu 1), GSTT1, ERCC2 and ERCC6, were also implicated in our meta-analyses.


Trends in Genetics | 2012

Relating human genetic variation to variation in drug responses

Ashraf G. Madian; Heather E. Wheeler; Richard B. Jones; M. Eileen Dolan

Although sequencing a single human genome was a monumental effort a decade ago, more than 1000 genomes have now been sequenced. The task ahead lies in transforming this information into personalized treatment strategies that are tailored to the unique genetics of each individual. One important aspect of personalized medicine is patient-to-patient variation in drug response. Pharmacogenomics addresses this issue by seeking to identify genetic contributors to human variation in drug efficacy and toxicity. Here, we present a summary of the current status of this field, which has evolved from studies of single candidate genes to comprehensive genome-wide analyses. Additionally, we discuss the major challenges in translating this knowledge into a systems-level understanding of drug physiology, with the ultimate goal of developing more effective personalized clinical treatment strategies.

Collaboration


Dive into the Heather E. Wheeler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy J. Cox

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge