Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather K. Allen is active.

Publication


Featured researches published by Heather K. Allen.


Proceedings of the National Academy of Sciences of the United States of America | 2012

In-feed antibiotic effects on the swine intestinal microbiome.

Torey Looft; Timothy A. Johnson; Heather K. Allen; Darrell O. Bayles; David P. Alt; Robert D. Stedtfeld; Woo Jun Sul; Tiffany M. Stedtfeld; Benli Chai; James R. Cole; Syed A. Hashsham; James M. Tiedje; Thad B. Stanton

Antibiotics have been administered to agricultural animals for disease treatment, disease prevention, and growth promotion for over 50 y. The impact of such antibiotic use on the treatment of human diseases is hotly debated. We raised pigs in a highly controlled environment, with one portion of the littermates receiving a diet containing performance-enhancing antibiotics [chlortetracycline, sulfamethazine, and penicillin (known as ASP250)] and the other portion receiving the same diet but without the antibiotics. We used phylogenetic, metagenomic, and quantitative PCR-based approaches to address the impact of antibiotics on the swine gut microbiota. Bacterial phylotypes shifted after 14 d of antibiotic treatment, with the medicated pigs showing an increase in Proteobacteria (1–11%) compared with nonmedicated pigs at the same time point. This shift was driven by an increase in Escherichia coli populations. Analysis of the metagenomes showed that microbial functional genes relating to energy production and conversion were increased in the antibiotic-fed pigs. The results also indicate that antibiotic resistance genes increased in abundance and diversity in the medicated swine microbiome despite a high background of resistance genes in nonmedicated swine. Some enriched genes, such as aminoglycoside O-phosphotransferases, confer resistance to antibiotics that were not administered in this study, demonstrating the potential for indirect selection of resistance to classes of antibiotics not fed. The collateral effects of feeding subtherapeutic doses of antibiotics to agricultural animals are apparent and must be considered in cost-benefit analyses.


Mbio | 2011

Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes

Heather K. Allen; Torey Looft; Darrell O. Bayles; Samuel B. Humphrey; Uri Y. Levine; David P. Alt; Thaddeus B. Stanton

ABSTRACT Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the “kill-the-winner” ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. IMPORTANCE This study advances our knowledge of the collateral effects of in-feed antibiotics at a time in which the widespread use of “growth-promoting” antibiotics in agriculture is under scrutiny. Using comparative metagenomics, we show that prophages are induced by in-feed antibiotics in swine fecal microbiomes and that antibiotic resistance genes were detected in most viromes. This suggests that in-feed antibiotics are contributing to phage-mediated gene transfer, potentially of antibiotic resistance genes, in the swine gut. Additionally, the so-called “kill-the-winner” model of phage-bacterium population dynamics has been shown in aquatic ecosystems but met with conflicting evidence in gut ecosystems. The data support the idea that swine fecal Streptococcus bacteria and their phages follow the kill-the-winner model. Understanding the role of phages in gut microbial ecology is an essential component of the antibiotic resistance problem and of developing potential mitigation strategies. This study advances our knowledge of the collateral effects of in-feed antibiotics at a time in which the widespread use of “growth-promoting” antibiotics in agriculture is under scrutiny. Using comparative metagenomics, we show that prophages are induced by in-feed antibiotics in swine fecal microbiomes and that antibiotic resistance genes were detected in most viromes. This suggests that in-feed antibiotics are contributing to phage-mediated gene transfer, potentially of antibiotic resistance genes, in the swine gut. Additionally, the so-called “kill-the-winner” model of phage-bacterium population dynamics has been shown in aquatic ecosystems but met with conflicting evidence in gut ecosystems. The data support the idea that swine fecal Streptococcus bacteria and their phages follow the kill-the-winner model. Understanding the role of phages in gut microbial ecology is an essential component of the antibiotic resistance problem and of developing potential mitigation strategies.


Trends in Microbiology | 2013

Treatment, promotion, commotion: antibiotic alternatives in food-producing animals

Heather K. Allen; Uri Y. Levine; Torey Looft; Meggan Bandrick; Thomas A. Casey

Alternatives to antibiotics are urgently needed in animal agriculture. The form these alternatives should take presents a complex problem due to the various uses of antibiotics in animal agriculture, including disease treatment, disease prevention, and growth promotion, and to the relative contribution of these uses to the antibiotic resistance problem. Numerous antibiotic alternatives, such as pre- and probiotics, have been proposed but show variable success. This is because a fundamental understanding of how antibiotics improve feed efficiency is lacking, and because an individual alternative is unlikely to embody all of the performance-enhancing functions of antibiotics. High-throughput technologies need to be applied to better understand the problem, and informed combinations of alternatives, including vaccines, need to be considered.


Annals of the New York Academy of Sciences | 2014

Finding alternatives to antibiotics

Heather K. Allen; Julian Trachsel; Torey Looft; Thomas A. Casey

The spread of antibiotic‐resistant pathogens requires new treatments. As the rate of development of new antibiotics has severely declined, alternatives to antibiotics must be considered in both animal agriculture and human medicine. Products for disease prevention are different from those for disease treatment, and examples of both are discussed here. For example, modulating the gut microbial community, either through feed additives or fecal transplantation, could be a promising way to prevent certain diseases; for disease treatment, non‐antibiotic approaches include phage therapy, phage lysins, bacteriocins, and predatory bacteria. Interestingly, several of these methods augment antibiotic efficacy by improving bacterial killing and decreasing antibiotic resistance selection. Because bacteria can ultimately evolve resistance to almost any therapeutic agent, it is important to continue to use both antibiotics and their alternatives judiciously.


Gut microbes | 2012

Collateral effects of antibiotics on mammalian gut microbiomes

Torey Looft; Heather K. Allen

Antibiotics are an essential component of the modern lifestyle. They improve our lives by treating disease, preventing disease, and in the case of agricultural animals by improving feed efficiency. However, antibiotic usage is not without collateral effects. The development and spread of antibiotic resistance is the most notorious concern associated with antibiotic use. New technologies have enabled the study of how the microbiota responds to the antibiotic disturbance, including how the community recovers after the antibiotic is removed. One common theme in studies of antibiotic effects is a rapid increase in Escherichia coli followed by a gradual decline. Increases in E. coli are also associated with systemic host stresses, and may be an indicator of ecosystem disturbances of the intestinal microbiota. Moreover, recent studies have shown additional effects mediated by antibiotics on the gut microbiota, such as the stimulation of gene transfer among gut bacteria and the reduction of immune responses in peripheral organs. Querying the microbiota after antibiotic treatment has led to intriguing hypotheses regarding predicting or mitigating unfavorable treatment outcomes. Here we explore the varied effects of antibiotics on human and animal microbiotas.


Current Opinion in Microbiology | 2014

Antibiotic resistance gene discovery in food-producing animals

Heather K. Allen

Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.


Frontiers in Microbiology | 2014

Carbadox has both temporary and lasting effects on the swine gut microbiota

Torey Looft; Heather K. Allen; Thomas A. Casey; David P. Alt; Thaddeus B. Stanton

Antibiotics are used in livestock and poultry production to treat and prevent disease as well as to promote animal growth. Carbadox is an in-feed antibiotic that is widely used in swine production to prevent dysentery and to improve feed efficiency. The goal of this study was to characterize the effects of carbadox and its withdrawal on the swine gut microbiota. Six pigs (initially 3-weeks old) received feed containing carbadox and six received unamended feed. After 3-weeks of continuous carbadox administration, all pigs were switched to a maintenance diet without carbadox. DNA was extracted from feces (n = 142) taken before, during, and following (6-week withdrawal) carbadox treatment. Phylotype analysis using 16S rRNA sequences showed the gradual development of the non-medicated swine gut microbiota over the 8-week study, and that the carbadox-treated pigs had significant differences in bacterial membership relative to non-medicated pigs. Enumeration of fecal Escherichia coli showed that a diet change concurrent with carbadox withdrawal was associated with an increase in the E. coli in the non-medicated pigs, suggesting that carbadox pre-treatment prevented an increase of E. coli populations. In-feed carbadox caused striking effects within 4 days of administration, with significant alterations in both community structure and bacterial membership, notably a large relative increase in Prevotella populations in medicated pigs. Digital PCR was used to show that the absolute abundance of Prevotella was unchanged between the medicated and non-medicated pigs despite the relative increase shown in the phylotype analysis. Carbadox therefore caused a decrease in the abundance of other gut bacteria but did not affect the absolute abundance of Prevotella. The pending regulation on antibiotics used in animal production underscores the importance of understanding how they modulate the microbiota and impact animal health, which will inform the search for antibiotic alternatives.


Applied and Environmental Microbiology | 2013

Butyrate-producing bacteria, including mucin degraders, from the swine intestinal tract.

Uri Y. Levine; Torey Looft; Heather K. Allen; Thad B. Stanton

ABSTRACT To identify bacteria with potential for influencing gut health, 980 anaerobes were cultured from the swine intestinal tract and analyzed for butyrate production. Fifteen isolates in the order Clostridiales produced butyrate and had butyryl coenzyme A (CoA):acetate CoA transferase activity. Three of the isolates grew on mucin, suggesting an intimate association with host intestinal mucosa.


Annual Review of Microbiology | 2014

Altered Egos: Antibiotic Effects on Food Animal Microbiomes*,†

Heather K. Allen; Thad B. Stanton

The human food chain begins with upwards of 1,000 species of bacteria that inhabit the intestinal tracts of poultry and livestock. These intestinal denizens are responsible for the health and safety of a major protein source for humans. The use of antibiotics to treat animal diseases was followed by the surprising discovery that antibiotics enhanced food animal growth, and both led to six decades of antibiotic use that has shaped food animal management practices. Perhaps the greatest impact of antibiotic feeding in food animals has been as a selective force in the evolution of their intestinal bacteria, particularly by increasing the prevalence and diversity of antibiotic resistance genes. Future antibiotic use will likely be limited to prudent applications in both human and veterinary medicine. Improved knowledge of antibiotic effects, particularly of growth-promoting antibiotics, will help overcome the challenges of managing animal health and food safety.


PLOS ONE | 2015

A Response Regulator from a Soil Metagenome Enhances Resistance to the β-Lactam Antibiotic Carbenicillin in Escherichia coli

Heather K. Allen; Ran An; Jo Handelsman; Luke A. Moe

Functional metagenomic analysis of soil metagenomes is a method for uncovering as-yet unidentified mechanisms for antibiotic resistance. Here we report an unconventional mode by which a response regulator derived from a soil metagenome confers resistance to the β-lactam antibiotic carbenicillin in Escherichia coli. A recombinant clone (βlr16) harboring a 5,169 bp DNA insert was selected from a metagenomic library previously constructed from a remote Alaskan soil. The βlr16 clone conferred specific resistance to carbenicillin, with limited increases in resistance to other tested antibiotics, including other β-lactams (penicillins and cephalosporins), rifampin, ciprofloxacin, erythromycin, chloramphenicol, nalidixic acid, fusidic acid, and gentamicin. Resistance was more pronounced at 24°C than at 37°C. Zone-of-inhibition assays suggested that the mechanism of carbenicillin resistance was not due to antibiotic inactivation. The DNA insert did not encode any genes known to confer antibiotic resistance, but did have two putative open reading frames (ORFs) that were annotated as a metallopeptidase and a two-component response regulator. Transposon mutagenesis and subcloning of the two ORFs followed by phenotypic assays showed that the response regulator gene was necessary and sufficient to confer the resistance phenotype. Quantitative reverse transcriptase PCR showed that the response regulator suppressed expression of the ompF porin gene, independently of the small RNA regulator micF, and enhanced expression of the acrD, mdtA, and mdtB efflux pump genes. This work demonstrates that antibiotic resistance can be achieved by the modulation of gene regulation by heterologous DNA. Functional analyses such as these can be important for making discoveries in antibiotic resistance gene biology and ecology.

Collaboration


Dive into the Heather K. Allen's collaboration.

Top Co-Authors

Avatar

Torey Looft

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Darrell O. Bayles

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

David P. Alt

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Julian Trachsel

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Thad B. Stanton

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Casey

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Uri Y. Levine

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Bradley L. Bearson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Brian W. Brunelle

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge