Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heather Sun is active.

Publication


Featured researches published by Heather Sun.


Clinical Cancer Research | 2013

PD-L1 Expression is Characteristic of a Subset of Aggressive B-Cell Lymphomas and Virus-Associated Malignancies

Benjamin J. Chen; Bjoern Chapuy; Jing Ouyang; Heather Sun; Margaretha G. M. Roemer; Mina L. Xu; Hongbo Yu; Christopher D. M. Fletcher; Gordon J. Freeman; Margaret A. Shipp; Scott J. Rodig

Purpose: Programmed cell death ligand 1 (PD-L1) is an immunomodulatory molecule expressed by antigen-presenting cells and select tumors that engages receptors on T cells to inhibit T-cell immunity. Immunotherapies targeting the PD-1/PD-L1 pathway have shown durable antitumor effects in a subset of patients with solid tumors. PD-L1 can be expressed by Reed–Sternberg cells comprising classical Hodgkin lymphoma (CHL) and by malignant B cells comprising EBV-positive posttransplant lymphoproliferative disorders (PTLD). We sought to determine whether the expression of PD-L1 represents a general strategy of immune evasion among aggressive B-cell lymphomas and virus- and immunodeficiency-associated tumors. Experimental Design: Using novel antibodies and formalin-fixed, paraffin-embedded (FFPE) tissue biopsies, we examined 237 primary tumors for expression of PD-L1. Results: Robust PD-L1 protein expression was found in the majority of nodular sclerosis and mixed cellularity CHL, primary mediastinal large B-cell lymphoma, T-cell/histiocyte-rich B-cell lymphoma, EBV-positive and -negative PTLD, and EBV-associated diffuse large B-cell lymphoma (DLBCL), plasmablastic lymphoma, extranodal NK/T-cell lymphoma, nasopharyngeal carcinoma, and HHV8-associated primary effusion lymphoma. Within these tumors, PD-L1 was highly expressed by malignant cells and tumor-infiltrating macrophages. In contrast, neither the malignant nor the nonmalignant cells comprising nodular lymphocyte-predominant Hodgkin lymphoma, DLBCL-not otherwise specified, Burkitt lymphoma, and HHV8-associated Kaposi sarcoma expressed detectable PD-L1. Conclusion: Certain aggressive B-cell lymphomas and virus- and immunodeficiency-associated malignancies associated with an ineffective T-cell immune response express PD-L1 on tumor cells and infiltrating macrophages. These results identify a group of neoplasms that should be considered for PD-1/PD-L1-directed therapies, and validate methods to detect PD-L1 in FFPE tissue biopsies. Clin Cancer Res; 19(13); 3462–73. ©2013 AACR.


Cancer Cell | 2013

Discovery and Characterization of Super-Enhancer Associated Dependencies in Diffuse Large B-Cell Lymphoma

Bjoern Chapuy; Michael R. McKeown; Charles Y. Lin; Stefano Monti; Margaretha G. M. Roemer; Jun Qi; Peter B. Rahl; Heather Sun; Kelly T. Yeda; John G. Doench; Elaine Reichert; Andrew L. Kung; Scott J. Rodig; Richard A. Young; Margaret A. Shipp; James E. Bradner

Diffuse large B cell lymphoma (DLBCL) is a biologically heterogeneous and clinically aggressive disease. Here, we explore the role of bromodomain and extra-terminal domain (BET) proteins in DLBCL, using integrative chemical genetics and functional epigenomics. We observe highly asymmetric loading of bromodomain 4 (BRD4) at enhancers, with approximately 33% of all BRD4 localizing to enhancers at 1.6% of occupied genes. These super-enhancers prove particularly sensitive to bromodomain inhibition, explaining the selective effect of BET inhibitors on oncogenic and lineage-specific transcriptional circuits. Functional study of genes marked by super-enhancers identifies DLBCLs dependent on OCA-B and suggests a strategy for discovering unrecognized cancer dependencies. Translational studies performed on a comprehensive panel of DLBCLs establish a therapeutic rationale for evaluating BET inhibitors in this disease.


Journal of Clinical Oncology | 2016

PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome

Margaretha G. M. Roemer; Ranjana H. Advani; Azra H. Ligon; Yasodha Natkunam; Robert Redd; Heather Homer; Courtney Connelly; Heather Sun; Sarah Daadi; Gordon J. Freeman; Philippe Armand; Bjoern Chapuy; Daphne de Jong; Richard T. Hoppe; Donna Neuberg; Scott J. Rodig; Margaret A. Shipp

PURPOSE Classical Hodgkin lymphomas (cHLs) include small numbers of malignant Reed-Sternberg cells within an extensive but ineffective inflammatory/immune cell infiltrate. In cHL, chromosome 9p24.1/PD-L1/PD-L2 alterations increase the abundance of the PD-1 ligands, PD-L1 and PD-L2, and their further induction through Janus kinase 2-signal transducers and activators of transcription signaling. The unique composition of cHL limits its analysis with high-throughput genomic assays. Therefore, the precise incidence, nature, and prognostic significance of PD-L1/PD-L2 alterations in cHL remain undefined. METHODS We used a fluorescent in situ hybridization assay to evaluate CD274/PD-L1 and PDCD1LG2/PD-L2 alterations in 108 biopsy specimens from patients with newly diagnosed cHL who were treated with the Stanford V regimen and had long-term follow-up. In each case, the frequency and magnitude of 9p24.1 alterations-polysomy, copy gain, and amplification-were determined, and the expression of PD-L1 and PD-L2 was evaluated by immunohistochemistry. We also assessed the association of 9p24.1 alterations with clinical parameters, which included stage (early stage I/II favorable risk, early stage unfavorable risk, advanced stage [AS] III/IV) and progression-free survival (PFS). RESULTS Ninety-seven percent of all evaluated cHLs had concordant alterations of the PD-L1 and PD-L2 loci (polysomy, 5% [five of 108]; copy gain, 56% [61 of 108]; amplification, 36% [39 of 108]). There was an association between PD-L1 protein expression and relative genetic alterations in this series. PFS was significantly shorter for patients with 9p24.1 amplification, and the incidence of 9p24.1 amplification was increased in patients with AS cHL. CONCLUSION PD-L1/PD-L2 alterations are a defining feature of cHL. Amplification of 9p24.1 is more common in patients with AS disease and associated with shorter PFS in this series. Further analyses of 9p24.1 alterations in patients treated with standard cHL induction regimens or checkpoint blockade are warranted.


Blood | 2012

L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway.

Elspeth Payne; Maria Virgilio; Anupama Narla; Heather Sun; Michelle Levine; Barry H. Paw; Nancy Berliner; A T Look; Benjamin L. Ebert; Arati Khanna-Gupta

Haploinsufficiency of ribosomal proteins (RPs) has been proposed to be the common basis for the anemia observed in Diamond-Blackfan anemia (DBA) and myelodysplastic syndrome with loss of chromosome 5q [del(5q) MDS]. We have modeled DBA and del(5q) MDS in zebrafish using antisense morpholinos to rps19 and rps14, respectively, and have demonstrated that, as in humans, haploinsufficient levels of these proteins lead to a profound anemia. To address the hypothesis that RP loss results in impaired mRNA translation, we treated Rps19 and Rps14-deficient embryos with the amino acid L-leucine, a known activator of mRNA translation. This resulted in a striking improvement of the anemia associated with RP loss. We confirmed our findings in primary human CD34⁺ cells, after shRNA knockdown of RPS19 and RPS14. Furthermore, we showed that loss of Rps19 or Rps14 activates the mTOR pathway, and this is accentuated by L-leucine in both Rps19 and Rps14 morphants. This effect could be abrogated by rapamycin suggesting that mTOR signaling may be responsible for the improvement in anemia associated with L-leucine. Our studies support the rationale for ongoing clinical trials of L-leucine as a therapeutic agent for DBA, and potentially for patients with del(5q) MDS.


Blood | 2016

Targetable genetic features of primary testicular and primary central nervous system lymphomas

Bjoern Chapuy; Margaretha G. M. Roemer; Chip Stewart; Yuxiang Tan; Ryan P. Abo; Liye Zhang; Andrew Dunford; David Meredith; Aaron R. Thorner; Ekaterina S. Jordanova; Gang Liu; Friedrich Feuerhake; Matthew Ducar; Gerald Illerhaus; Daniel Gusenleitner; Erica Linden; Heather Sun; Heather Homer; Miyuki Aono; Geraldine S. Pinkus; Azra H. Ligon; Keith L. Ligon; Judith A. Ferry; Gordon J. Freeman; Paul Van Hummelen; Todd R. Golub; Gad Getz; Scott J. Rodig; Daphne de Jong; Stefano Monti

Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL.


The American Journal of Surgical Pathology | 2013

ROS1 Immunohistochemistry for Detection of ROS1-Rearranged Lung Adenocarcinomas

Lynette M. Sholl; Heather Sun; Mohit Butaney; Chengsheng Zhang; Charles Lee; Pasi A. Jänne; Scott J. Rodig

ROS1 gene rearrangements are reported in 1% to 2% of lung adenocarcinomas (ACAs) and are associated with response to the multitargeted tyrosine kinase inhibitor crizotinib. ROS1 rearrangements can be detected using fluorescence in situ hybridization (FISH); however, immunohistochemistry (IHC) for ROS1 protein is a promising alternate screening modality. In this study, we examine the correlation between ROS1 IHC and FISH and describe the clinicopathologic characteristics of ROS1-rearranged lung tumors. ROS1 IHC was performed using clone D4D6 on whole-tissue sections. In a validation cohort, IHC was compared with ROS1 break-apart FISH in 53 cases of lung ACA enriched for an absence of known genetic alterations and never-smoking status. In a screening cohort, we performed ROS1 IHC on 167 consecutive cases of lung ACA from a routine molecular diagnostic practice and confirmed positive results by FISH. In the validation cohort, 6 cases (11%) were both FISH and IHC positive. One FISH-negative case was strongly ROS1 IHC positive. All IHC-negative cases were FISH negative. In the screening cohort, 2 of 167 (1.2%) had strong, diffuse ROS1 protein expression; a rearrangement was confirmed by FISH in both. ROS1-translocated tumors were wild type for EGFR, KRAS, and ALK and commonly had solid growth with mucinous/cribriform features and psammomatous calcification. ROS1 protein expression in tumor cells is 100% sensitive and 92% specific for ROS1 rearrangements by FISH. ROS1 IHC is an effective screening tool for this rare but clinically important subset of lung ACAs.


The American Journal of Surgical Pathology | 2014

Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain.

Min Shi; Margaretha G. M. Roemer; Bjoern Chapuy; Xiaoyun Liao; Heather Sun; Geraldine S. Pinkus; Margaret A. Shipp; Gordon J. Freeman; Scott J. Rodig

Primary mediastinal (thymic) large B-cell lymphoma (PMBL) and diffuse large B-cell lymphoma (DLBCL) are tumors with distinct clinical and molecular characteristics that are difficult to distinguish by histopathologic and phenotypic analyses alone. Programmed cell death 1 ligand 2 (PD-L2) is a cell surface protein expressed by activated macrophages and dendritic cells that binds PD-1 on T cells to inhibit immune responses. Amplification and/or translocations involving chromosome 9p24.1, a region that includes PDCD1LG2-encoding PD-L2, is a common event in PMBL but not DLBCL and suggests that PD-L2 expression might be a distinguishing feature of PMBL. We developed an assay for the immunohistochemical detection of PD-L2 protein in fixed biopsy specimens (PD-L2 IHC), which we applied to a cohort of PMBLs and DLBCLs. For a subset of cases, we correlated the results of PD-L2 IHC with PDCD1LG2 copy number (CN) as determined by quantitative polymerase chain reaction. Twenty-three of 32 (72%) PMBLs but only 1 of 37 (3%) DLBCLs were positive by PD-L2 IHC. Among PMBLs with PDCD1LG2 CN gain, all were positive by PD-L2 IHC. One PMBL without CN gain was positive by PD-L2 IHC. When expressed in PMBL, PD-L2 was restricted to tumor cells and not detected on intratumoral macrophages. We conclude that PD-L2 protein is robustly expressed by the majority of PMBLs but only rare DLBCLs and often associated with PDCD1LG2 copy gain. PD-L2 IHC may serve as a useful ancillary test for distinguishing PMBL from DLBCL and for the rational selection of patients for therapeutic antibodies that inhibit PD-1 signaling.


Clinical Cancer Research | 2014

Selective JAK2 Inhibition Specifically Decreases Hodgkin Lymphoma and Mediastinal Large B-cell Lymphoma Growth In Vitro and In Vivo

Yansheng Hao; Bjoern Chapuy; Stefano Monti; Heather Sun; Scott J. Rodig; Margaret A. Shipp

Purpose: Classical Hodgkin lymphoma (cHL) and primary mediastinal large B-cell lymphoma (MLBCL) share similar histologic, clinical, and genetic features. In recent studies, we found that disease-specific chromosome 9p24.1/JAK2 amplification increased JAK2 expression and activity in both cHL and MLBCL. This prompted us to assess the activity of a clinical grade JAK2 selective inhibitor, fedratinib (SAR302503/TG101348), in in vitro and in vivo model systems of cHL and MLBCL with defined JAK2 copy numbers. Experimental Design: We used functional and immunohistochemical analyses to investigate the preclinical activity of fedratinib and associated biomarkers in cell lines and murine xenograft models of cHL and MLBCL with known 9p24.1/JAK2 copy number. Results: Chemical JAK2 inhibition decreased the cellular proliferation of cHL and MLBCL cell lines and induced their apoptosis. There was an inverse correlation between 9p24.1/JAK2 copy number and the EC50 of fedratinib. Chemical JAK2 inhibition decreased phosphorylation of JAK2, STAT1, STAT3, and STAT6 and reduced the expression of additional downstream targets, including PD-L1, in a copy number–dependent manner. In murine xenograft models of cHL and MLBCL with 9p24.1/JAK2 amplification, chemical JAK2 inhibition significantly decreased JAK2/STAT signaling and tumor growth and prolonged survival. In in vitro and in vivo studies, pSTAT3 was an excellent biomarker of baseline JAK2 activity and the efficacy of chemical JAK2 inhibition. Conclusions: In in vitro and in vivo analyses, cHL and MLBCL with 9p24.1/JAK2 copy gain are sensitive to chemical JAK2 inhibition suggesting that clinical evaluation of JAK2 blockade is warranted. Clin Cancer Res; 20(10); 2674–83. ©2014 AACR.


Cancer immunology research | 2015

PD-L1 Antibodies to Its Cytoplasmic Domain Most Clearly Delineate Cell Membranes in Immunohistochemical Staining of Tumor Cells

Kathleen M. Mahoney; Heather Sun; Xiaoyun Liao; Ping Hua; Marcella Callea; Edward A. Greenfield; F.S. Hodi; Arlene H. Sharpe; Sabina Signoretti; Scott J. Rodig; Gordon J. Freeman

Unambiguous assessment of the presence of PD-L1 in the membrane of tumor cells could increase its utility as a prognostic marker for PD-1 blockade treatment. Three monoclonal antibodies to PD-L1s cytoplasmic domain clearly demarcated membrane from cytoplasmic staining. Blocking the programmed death-1 (PD-1) pathway has clinical benefit in metastatic cancer and has led to the approval of the mAbs pembrolizumab and nivolumab to treat melanoma and nivolumab for non–small cell lung cancer. Expression of PD-L1 on the cell surface of either tumor cells or infiltrating immune cells is associated with a higher likelihood of response to PD-1 blockade in multiple studies. Most mAbs to PD-L1 in use are directed to its extracellular domain and immunohistochemically stain tumor tissue with a mixture of cytoplasmic and membrane staining. Cytoplasmic staining obscures the interpretation of a positive reaction on the tumor cell membrane, and thus affects the accuracy of PD-L1 scoring systems. We developed a mAb to the cytoplasmic domain of PD-L1, 405.9A11 (9A11), which is both more selective for membranous PD-L1 and more sensitive in IHC and Western blotting, compared with previous mAbs specific for the PD-L1 extracellular domain. Here, we compare immunohistochemical staining patterns of PD-L1 expression in five types of tumors, using five PD-L1 mAbs: 9A11, 7G11, and three commercially available mAbs. We demonstrate that 9A11, as well as two other cytoplasmic domain-specific mAbs, E1L3N and SP142, can clearly delineate the membrane of PD-L1–positive cells in formalin-fixed paraffin-embedded tissue and facilitate interpretation of staining results. Cancer Immunol Res; 3(12); 1308–15. ©2015 AACR.


Journal of Clinical Oncology | 2017

Relapsed or Refractory Double-Expressor and Double-Hit Lymphomas Have Inferior Progression-Free Survival After Autologous Stem-Cell Transplantation

Alex F. Herrera; Matthew Mei; Lawrence Low; Haesook T. Kim; Gabriel K. Griffin; Joo Y. Song; Reid W. Merryman; Victoria Bedell; Christine Pak; Heather Sun; Tanya Paris; Tracey Stiller; Jennifer R. Brown; Lihua E. Budde; Wing C. Chan; Robert Chen; Matthew S. Davids; Arnold S. Freedman; David C. Fisher; Eric D. Jacobsen; Caron A. Jacobson; Ann S. LaCasce; Joyce Murata-Collins; Auayporn Nademanee; Joycelynne Palmer; German Pihan; Raju Pillai; Leslie Popplewell; Tanya Siddiqi; Aliyah R. Sohani

Purpose Double-hit lymphomas (DHLs) and double-expressor lymphomas (DELs) are subtypes of diffuse large B-cell lymphoma (DLBCL) associated with poor outcomes after standard chemoimmunotherapy. Data are limited regarding outcomes of patients with relapsed or refractory (rel/ref) DEL or DHL who undergo autologous stem-cell transplantation (ASCT). We retrospectively studied the prognostic impact of DEL and DHL status on ASCT outcomes in patients with rel/ref DLBCL. Methods Patients with chemotherapy-sensitive rel/ref DLBCL who underwent ASCT at two institutions and in whom archival tumor material was available were enrolled. Immunohistochemistry for MYC, BCL2, and BCL6 and fluorescence in situ hybridization (FISH) for MYC were performed. In cases with MYC rearrangement or copy gain, FISH for BCL2 and BCL6 was also performed. Results A total of 117 patients were included; 44% had DEL and 10% had DHL. DEL and DHL were associated with inferior progression-free survival (PFS), and DHL was associated with poorer overall survival (OS). The 4-year PFS in patients with DEL compared with those with non-DEL was 48% versus 59% ( P = .049), and the 4-year OS was 56% versus 67% ( P = .10); 4-year PFS in patients with DHL compared with those with non-DHL was 28% versus 57% ( P = .013), and 4-year OS was 25% versus 61% ( P = .002). The few patients with concurrent DEL and DHL had a poor outcome (4-year PFS, 0%). In multivariable models, DEL and DHL were independently associated with inferior PFS, whereas DHL and partial response ( v complete response) at transplant were associated with inferior OS. Conclusion DEL and DHL are both associated with inferior outcomes after ASCT in patients with rel/ref DLBCL. Although ASCT remains a potentially curative approach, these patients, particularly those with DHL, are a high-risk subset who should be targeted for investigational strategies other than standard ASCT.

Collaboration


Dive into the Heather Sun's collaboration.

Top Co-Authors

Avatar

Scott J. Rodig

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex F. Herrera

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azra H. Ligon

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge