Héctor D. de Paz
University of Cantabria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Héctor D. de Paz.
Antimicrobial Agents and Chemotherapy | 2013
Roberto Díez-Martínez; Héctor D. de Paz; Noemí Bustamante; Ernesto García; Margarita Menéndez; Pedro García
ABSTRACT Phage endolysins are murein hydrolases that break the bacterial cell wall to provoke lysis and release of phage progeny. Recently, these enzymes have also been recognized as powerful and specific antibacterial agents when added exogenously. In the pneumococcal system, most cell wall associated murein hydrolases reported so far depend on choline for activity, and Cpl-7 lysozyme constitutes a remarkable exception. Here, we report the improvement of the killing activity of the Cpl-7 endolysin by inversion of the sign of the charge of the cell wall-binding module (from −14.93 to +3.0 at neutral pH). The engineered variant, Cpl-7S, has 15 amino acid substitutions and an improved lytic activity against Streptococcus pneumoniae (including multiresistant strains), Streptococcus pyogenes, and other pathogens. Moreover, we have demonstrated that a single 25-μg dose of Cpl-7S significantly increased the survival rate of zebrafish embryos infected with S. pneumoniae or S. pyogenes, confirming the killing effect of Cpl-7S in vivo. Interestingly, Cpl-7S, in combination with 0.01% carvacrol (an essential oil), was also found to efficiently kill Gram-negative bacteria such as Escherichia coli and Pseudomonas putida, an effect not described previously. Our findings provide a strategy to improve the lytic activity of phage endolysins based on facilitating their pass through the negatively charged bacterial envelope, and thereby their interaction with the cell wall target, by modulating the net charge of the cell wall-binding modules.
Journal of Bacteriology | 2010
Héctor D. de Paz; Delfina Larrea; Sandra Zunzunegui; Christoph Dehio; Fernando de la Cruz; Matxalen Llosa
The conjugative coupling protein TrwB is responsible for connecting the relaxosome to the type IV secretion system during conjugative DNA transfer of plasmid R388. It is directly involved in transport of the relaxase TrwC, and it displays an ATPase activity probably involved in DNA pumping. We designed a conjugation assay in which the frequency of DNA transfer is directly proportional to the amount of TrwB. A collection of point mutants was constructed in the TrwB cytoplasmic domain on the basis of the crystal structure of TrwB Delta N70, targeting the nucleotide triphosphate (NTP)-binding region, the cytoplasmic surface, or the internal channel in the hexamer. An additional set of transfer-deficient mutants was obtained by random mutagenesis. Most mutants were impaired in both DNA and protein transport. We found that the integrity of the nucleotide binding domain is absolutely required for TrwB function, which is also involved in monomer-monomer interactions. Polar residues surrounding the entrance and inside the internal channel were important for TrwB function and may be involved in interactions with the relaxosomal components. Finally, the N-terminal transmembrane domain of TrwB was subjected to random mutagenesis followed by a two-hybrid screen for mutants showing enhanced protein-protein interactions with the related TrwE protein of Bartonella tribocorum. Several point mutants were obtained with mutations in the transmembranal helices: specifically, one proline from each protein may be the key residue involved in the interaction of the coupling protein with the type IV secretion apparatus.
Journal of Bacteriology | 2011
Esther Fernández-González; Héctor D. de Paz; Anabel Alperi; Leticia Agúndez; Marco Faustmann; Félix J. Sangari; Christoph Dehio; Matxalen Llosa
Bacterial type IV secretion systems (T4SSs) are involved in processes such as bacterial conjugation and protein translocation to animal cells. In this work, we have switched the substrates of T4SSs involved in pathogenicity for DNA transfer. Plasmids containing part of the conjugative machinery of plasmid R388 were transferred by the T4SS of human facultative intracellular pathogen Bartonella henselae to both recipient bacteria and human vascular endothelial cells. About 2% of the human cells expressed a green fluorescent protein (GFP) gene from the plasmid. Plasmids of different sizes were transferred with similar efficiencies. B. henselae codes for two T4SSs: VirB/VirD4 and Trw. A ΔvirB mutant strain was transfer deficient, while a ΔtrwE mutant was only slightly impaired in DNA transfer. DNA transfer was in all cases dependent on protein TrwC of R388, the conjugative relaxase, implying that it occurs by a conjugation-like mechanism. A DNA helicase-deficient mutant of TrwC could not promote DNA transfer. In the absence of TrwB, the coupling protein of R388, DNA transfer efficiency dropped 1 log. The same low efficiency was obtained with a TrwB point mutation in the region involved in interaction with the T4SS. TrwB interacted with VirB10 in a bacterial two-hybrid assay, suggesting that it may act as the recruiter of the R388 substrate for the VirB/VirD4 T4SS. A TrwB ATPase mutant behaved as dominant negative, dropping DNA transfer efficiency to almost null levels. B. henselae bacteria recovered from infected human cells could transfer the mobilizable plasmid into recipient Escherichia coli under certain conditions, underscoring the versatility of T4SSs.
Journal of Antimicrobial Chemotherapy | 2015
Roberto Díez-Martínez; Héctor D. de Paz; Esther García-Fernández; Noemí Bustamante; Chad W. Euler; Vincent A. Fischetti; Margarita Menéndez; Pedro García
OBJECTIVES Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide and new antimicrobials are urgently needed. Our aim was new chimeric phage endolysins, or lysins, with improved bactericidal activity by swapping the structural components of two pneumococcal phage lysozymes: Cpl-1 (the best lysin tested to date) and Cpl-7S. METHODS The bactericidal effects of four new chimeric lysins were checked against several bacteria. The purified enzymes were added at different concentrations to resuspended bacteria and viable cells were measured after 1 h. Killing capacity of the most active lysin, Cpl-711, was tested in a mouse bacteraemia model, following mouse survival after injecting different amounts (25-500 μg) of enzyme. The capacity of Cpl-711 to reduce pneumococcal biofilm formation was also studied. RESULTS The chimera Cpl-711 substantially improved the killing activity of the parental phage lysozymes, Cpl-1 and Cpl-7S, against pneumococcal bacteria, including multiresistant strains. Specifically, 5 μg/mL Cpl-711 killed ≥7.5 log of pneumococcal R6 strain. Cpl-711 also reduced pneumococcal biofilm formation and killed 4 log of the bacterial population at 1 μg/mL. Mice challenged intraperitoneally with D39_IU pneumococcal strain were protected by treatment with a single intraperitoneal injection of Cpl-711 1 h later, resulting in about 50% greater protection than with Cpl-1. CONCLUSIONS Domain swapping among phage lysins allows the construction of new chimeric enzymes with high bactericidal activity and a different substrate range. Cpl-711, the most powerful endolysin against pneumococci, offers a promising therapeutic perspective for the treatment of multiresistant pneumococcal infections.
Microbiology | 2009
Carlos Barreiro; Diana Nakunst; Andrea T. Hüser; Héctor D. de Paz; Jörn Kalinowski; Juan F. Martín
This article has been retracted at the request of Microbiology because identical bands for the 16S rRNA probe controls in the Northern blots were reported to correspond to experiments using different strains and experimental conditions in articles published in this journal and in Journal of Bacteriology over a period of 5 years.
Plasmid | 2013
Delfina Larrea; Héctor D. de Paz; Ignacio Arechaga; Fernando de la Cruz; Matxalen Llosa
The stability of components of multiprotein complexes often relies on the presence of the functional complex. To assess structural dependence among the components of the R388 Type IV secretion system (T4SS), the steady-state level of several Trw proteins was determined in the absence of other Trw components. While several Trw proteins were affected by the lack of others, we found that the coupling protein TrwB is not affected by the absence of other T4SS components, nor did its absence alter significantly the levels of integral components of the complex, underscoring the independent role of the coupling protein on the T4SS architecture. The cytoplasmic ATPases TrwK (VirB4) and TrwD (VirB11) were affected by the absence of several core complex components, while the pilus component TrwJ (VirB5) required the presence of all other Trw proteins (except for TrwB) to be detectable. Overall, the results delineate a possible assembly pathway for the T4SS of R388. We have also tested structural complementation of TrwD (VirB11) and TrwJ (VirB5) by their homologues in the highly related Trw system of Bartonella tribocorum (Bt). The results reveal a correlation with the functional complementation data previously reported.
Molecular Genetics and Genomics | 2017
Delfina Larrea; Héctor D. de Paz; Inmaculada Matilla; Dolores L. Guzmán-Herrador; Gorka Lasso; Fernando de la Cruz; Elena Cabezón; Matxalen Llosa
Conjugative transfer of plasmid R388 requires the coupling protein TrwB for protein and DNA transport, but their molecular role in transport has not been deciphered. We investigated the role of residues protruding into the central channel of the TrwB hexamer by a mutational analysis. Mutations affecting lysine residues K275, K398, and K421, and residue S441, all facing the internal channel, affected transport of both DNA and the relaxase protein in vivo. The ATPase activity of the purified soluble variants was affected significantly in the presence of accessory protein TrwA or DNA, correlating with their behaviour in vivo. Alteration of residues located at the cytoplasmic or the inner membrane interface resulted in lower activity in vivo and in vitro, while variants affecting residues in the central region of the channel showed increased DNA and protein transfer efficiency and higher ATPase activity, especially in the absence of TrwA. In fact, these variants could catalyze DNA transfer in the absence of TrwA under conditions in which the wild-type system was transfer deficient. Our results suggest that protein and DNA molecules have the same molecular requirements for translocation by Type IV secretion systems, with residues at both ends of the TrwB channel controlling the opening–closing mechanism, while residues embedded in the channel would set the pace for substrate translocation (both protein and DNA) in concert with TrwA.
Microbiology | 2005
Héctor D. de Paz; Félix J. Sangari; Silvia Bolland; Juan M. García-Lobo; Christoph Dehio; Fernando de la Cruz; Matxalen Llosa
Archive | 2015
Pedro Alfaro García; Margarita Menéndez; Ernesto García; Roberto Díez-Martínez; Héctor D. de Paz; Noemí Bustamante
Archive | 2014
Pedro Alfaro García; Margarita Menéndez; Ernesto García; Roberto Díez-Martínez; Héctor D. de Paz; Noemí Bustamante