Matxalen Llosa
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Matxalen Llosa.
Molecular Microbiology | 2002
Matxalen Llosa; F. Xavier Gomis-Rüth; Miquel Coll; Fernando de la Cruz
Bacterial conjugation is a promiscuous DNA transport mechanism. Conjugative plasmids transfer themselves between most bacteria, thus being one of the main causal agents of the spread of antibiotic resistance among pathogenic bacteria. Moreover, DNA can be transferred conjugatively into eukaryotic host cells. In this review, we aim to address several basic questions regarding the DNA transfer mechanism. Conjugation can be visualized as a DNA rolling‐circle replication (RCR) system linked to a type IV secretion system (T4SS), the latter being macromolecular transporters widely involved in pathogenic mechanisms. The scheme ‘replication + secretion’ suggests how the mechanism would work on the DNA substrate and at the bacterial membrane. But, how do these two parts come into contact? Furthermore, how is the DNA transported? T4SS are known to be involved in protein secretion in different organisms, but DNA is a very different macromolecule. The so‐called coupling proteins could be the answer to both questions by performing a dual role in conjugation: coupling the two main components of the machinery (RCR and T4SS) and actively mediating DNA transport. We postulate that the T4SS is responsible for transport of the pilot protein (the relaxase) to the recipient. The DNA that is covalently linked to it is initially transported in a passive manner, trailing on the relaxase. We speculate that the pilus appendage could work as a needle, thrusting the substrate proteins to cross one or several membrane barriers into the recipient cytoplasm. This is the first step in conjugation. The second step is the active pumping of the DNA to the recipient, using the already available T4SS transport conduit. It is proposed that this second step is catalysed by the coupling proteins. Our ‘shoot and pump’ model solves the protein–DNA transport paradox of T4SS.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Matxalen Llosa; Sandra Zunzunegui; Fernando de la Cruz
Conjugative coupling proteins (CPs) are proposed to play a role in connecting the relaxosome to a type IV secretion system (T4SS) during bacterial conjugation. Here we present biochemical and genetic evidence indicating that the prototype CP, TrwB, interacts with both relaxosome and type IV secretion components of plasmid R388. The cytoplasmic domain of TrwB immobilized in an affinity resin retained TrwC and TrwA proteins, the components of R388 relaxosome. By using the bacterial two-hybrid system, a strong interaction was detected between TrwB and TrwE, a core component of the conjugative T4SS. This interaction was lost when the transmembrane domains of either TrwB or TrwE were deleted, thus suggesting that it takes place within the membrane or periplasmic portions of both proteins. We have also analyzed the interactions with components of the related IncN plasmid pKM101. Its CP, TraJ, did not interact with TrwA, suggesting a highly specific interaction with the relaxosome. On the other side, CPs from three different conjugation systems were shown to interact with both their cognate TrwE-like component and the heterologous ones, suggesting that this interaction is less specific. Mating experiments among the three systems confirmed that relaxosome components need their cognate CP for transfer, whereas T4SSs are interchangeable. As a general rule, there is a correlation between the strength of the interaction seen by two-hybrid analysis and the efficiency of transfer.
Molecular Microbiology | 2009
Matxalen Llosa; Craig R. Roy; Christoph Dehio
Type IV secretion (T4S) systems are versatile machines involved in many processes relevant to bacterial virulence, such as horizontal DNA transfer and effector translocation into human cells. A recent workshop organized by the International University of Andalousia in Baeza, Spain, covered most aspects of bacterial T4S relevant to human disease, ranging from the structural and mechanistic analysis of the T4S systems to the physiological roles of the translocated effector proteins in subverting cellular functions in infected humans. This review reports the highlights from this workshop, which include the first visualization of a T4S system core complex spanning both membranes of Gram‐negative bacteria, the identification of the first host receptors for T4S systems, the identification and characterization of novel T4S effector proteins, the analysis of the molecular function of effector proteins in subverting human cellular functions and an analysis of the role of T4S systems in the evolution of pathogenic bacteria. Our increasing knowledge of the biology of T4S systems improves our ability to exploit them as biotechnological tools or to use them as novel targets for a new generation of antimicrobials.
Journal of Bacteriology | 2000
Matxalen Llosa; John R. Zupan; Christian Baron; Patricia C. Zambryski
Genetic transformation of plants by Agrobacterium tumefaciens is mediated by a virulence (vir)-specific type IV secretion apparatus assembled from 11 VirB proteins and VirD4. VirB1, targeted to the periplasm by an N-terminal signal peptide, is processed to yield VirB1*, comprising the C-terminal 73 amino acids. The N-terminal segment, which shares homology with chicken egg white lysozyme as well as lytic transglycosylases, may provide local lysis of the peptidoglycan cell wall to create channels for transporter assembly. Synthesis of VirB1* followed by its secretion to the exterior of the cell suggests that VirB1* may also have a role in virulence. In the present study, we provide evidence for the dual roles of VirB1 in tumorigenesis as well as the requirements for processing and secretion of VirB1*. Complementation of a virB1 deletion strain with constructs expressing either the N-terminal lysozyme-homologous region or VirB1* results in tumors intermediate in size between those induced by a wild-type strain and a virB1 deletion strain, suggesting that each domain has a unique role in tumorigenesis. The secretion of VirB1* translationally fused to the signal peptide indicates that processing and secretion are not coupled. When expressed independently of all other vir genes, VirB1 was processed and VirB1* was secreted. When restricted to the cytoplasm by deletion of the signal peptide, VirB1 was neither processed nor secreted and did not restore virulence to the virB1 deletion strain. Thus, factors that mediate processing of VirB1 and secretion of VirB1* are localized in the periplasm or outer membrane and are not subject to vir regulation.
Molecular Genetics and Genomics | 1991
Matxalen Llosa; Silvia Bolland; Fernando de la Cruz
SummaryWe cloned and sequenced a 402 by DNA segment containing the origin of conjugal transfer (oriT) of the IncW plasmid R388. Progressive deletions from each end of the sequence were assayed for oriT activity. Stepwise reductions in mobilization frequencies, representing the loss of functional elements, correlated with deletion of structural motifs in the sequence. A sequence of 330 by of oriT was sufficient for efficient mobilization. The first 86 by of the sequence contains five tandemly repeated DNA sequences of 11 bp, followed by a 10 by perfect inverted repeat. Deletion of the first 95 by reduced the frequency of transfer by a hundred-fold. The sequence between by 183 and 218 was necessary and sufficient for low frequency mobilization and, thus, it was assumed to contain the nick site. This basis core was cloned as a 60 by segment (from by 176–236) that could be mobilized at low frequency. It includes two inverted repeats and a perfect integration host factor (IHF) consensus binding site. A third functionally important segment in oriT was located between by 260 and 330. The DNA sequence of the oriT of R388 could be aligned with that of the broad-host-range IncN plasmid R46. Moreover, the relative positions of the three inverted repeats are also conserved. Overall sequence similarity was 52%, but was significantly higher in particular regions, whch coincided with the functionally important segments mapped by deletion analysis. Conservation of these segments provided independent support for their essential role in oriT function.
Journal of Bacteriology | 2010
Héctor D. de Paz; Delfina Larrea; Sandra Zunzunegui; Christoph Dehio; Fernando de la Cruz; Matxalen Llosa
The conjugative coupling protein TrwB is responsible for connecting the relaxosome to the type IV secretion system during conjugative DNA transfer of plasmid R388. It is directly involved in transport of the relaxase TrwC, and it displays an ATPase activity probably involved in DNA pumping. We designed a conjugation assay in which the frequency of DNA transfer is directly proportional to the amount of TrwB. A collection of point mutants was constructed in the TrwB cytoplasmic domain on the basis of the crystal structure of TrwB Delta N70, targeting the nucleotide triphosphate (NTP)-binding region, the cytoplasmic surface, or the internal channel in the hexamer. An additional set of transfer-deficient mutants was obtained by random mutagenesis. Most mutants were impaired in both DNA and protein transport. We found that the integrity of the nucleotide binding domain is absolutely required for TrwB function, which is also involved in monomer-monomer interactions. Polar residues surrounding the entrance and inside the internal channel were important for TrwB function and may be involved in interactions with the relaxosomal components. Finally, the N-terminal transmembrane domain of TrwB was subjected to random mutagenesis followed by a two-hybrid screen for mutants showing enhanced protein-protein interactions with the related TrwE protein of Bartonella tribocorum. Several point mutants were obtained with mutations in the transmembranal helices: specifically, one proline from each protein may be the key residue involved in the interaction of the coupling protein with the type IV secretion apparatus.
Molecular Microbiology | 2004
Matxalen Llosa; David O'Callaghan
Type IV secretion systems (T4SSs) mediate both protein and ssDNA secretion from a wide range of bacteria into virtually any cell type or into the milieu. It is this versatility that confers on them the ability to participate in many processes of bacterial life that imply communication with their environment. Type IV secretion systems are involved in horizontal DNA transfer to other bacteria and to plant cells, in DNA uptake from the milieu, in toxin secretion into the milieu, and in the injection of virulence factors into the eukaryotic host cell in a number of mammalian and plant pathogens. Recently, a EuroConference addressed the different aspects of the biology of these transmembrane multiprotein complexes, from the crystal structure of the individual components to the modification that the secreted substrates induce in the recipient cell. Significant progress has been made in the understanding of the molecular architecture and mechanism of secretion. The analysis of protein–protein interactions confirms the role of coupling proteins as substrate recruiters for the transporter. The VirB10 component of the complex has come up as a strong candidate for signal transducer. The wide range of effects on the recipient suggests that many effector proteins are secreted. New effector proteins are being identified for both plant and animal pathogens, as are their targets within the host cells. New T4SS members are being identified that perform novel roles, beyond DNA transfer and virulence, such as establishment of symbiotic processes. Our current knowledge of the Biology of Type IV Secretion Processes increases our ability to exploit them as biotechnological tools or to use them as new targets for inhibitors that could constitute a new generation of antimicrobials in the near future.
Journal of Bacteriology | 2011
Esther Fernández-González; Héctor D. de Paz; Anabel Alperi; Leticia Agúndez; Marco Faustmann; Félix J. Sangari; Christoph Dehio; Matxalen Llosa
Bacterial type IV secretion systems (T4SSs) are involved in processes such as bacterial conjugation and protein translocation to animal cells. In this work, we have switched the substrates of T4SSs involved in pathogenicity for DNA transfer. Plasmids containing part of the conjugative machinery of plasmid R388 were transferred by the T4SS of human facultative intracellular pathogen Bartonella henselae to both recipient bacteria and human vascular endothelial cells. About 2% of the human cells expressed a green fluorescent protein (GFP) gene from the plasmid. Plasmids of different sizes were transferred with similar efficiencies. B. henselae codes for two T4SSs: VirB/VirD4 and Trw. A ΔvirB mutant strain was transfer deficient, while a ΔtrwE mutant was only slightly impaired in DNA transfer. DNA transfer was in all cases dependent on protein TrwC of R388, the conjugative relaxase, implying that it occurs by a conjugation-like mechanism. A DNA helicase-deficient mutant of TrwC could not promote DNA transfer. In the absence of TrwB, the coupling protein of R388, DNA transfer efficiency dropped 1 log. The same low efficiency was obtained with a TrwB point mutation in the region involved in interaction with the T4SS. TrwB interacted with VirB10 in a bacterial two-hybrid assay, suggesting that it may act as the recruiter of the R388 substrate for the VirB/VirD4 T4SS. A TrwB ATPase mutant behaved as dominant negative, dropping DNA transfer efficiency to almost null levels. B. henselae bacteria recovered from infected human cells could transfer the mobilizable plasmid into recipient Escherichia coli under certain conditions, underscoring the versatility of T4SSs.
Molecular Microbiology | 2006
Carolina Elvira César; Cristina Machón; Fernando de la Cruz; Matxalen Llosa
We show that relaxase TrwC promotes recombination between two directly repeated oriTs while related relaxases TraI of F and pKM101 do not. Efficient recombination required also relaxosome accessory protein TrwA even after deletion of TrwA binding sites at oriT, suggesting that the effect of TrwA is mediated by protein–protein interactions. TrwC relaxase domain was necessary but not sufficient to catalyse recombination efficiently. Full recombinase activity was obtained with the N‐terminal 600 residues of TrwC. The minimal target sequences required for recombination were different at each of the two involved oriTs: oriT1 could be reduced to the nic site and TrwC binding site, while oriT2 required an extended sequence including a set of iterons that are not required for conjugation. TrwC‐mediated integration of a transferred DNA into a resident oriT copy required a complete oriT in the recipient. We observed dramatic changes in the efficiency of recombination between tandem oriTs linked to the direction of plasmid replication and transcription through oriT1. We propose that recombination is triggered by the generation of a single‐stranded DNA at oriT1 that causes TrwC nicking. The resulting TrwC‐DNA complex reacts with oriT2, excising the intervening DNA. This intermediate can be resolved by host‐encoded replication functions.
Trends in Microbiology | 2012
Matxalen Llosa; Gunnar Schröder; Christoph Dehio
The type IV secretion system (T4SS) VirB/D4 of the facultative intracellular pathogen Bartonella henselae is known to translocate bacterial effector proteins into human cells. Two recent reports on DNA transfer into human cells have demonstrated the versatility of this bacterial secretion system for macromolecular substrate transfer. Moreover, these findings have opened the possibility for developing new tools for DNA delivery into specific human cell types. DNA can be introduced into these cells covalently attached to a site-specific integrase with potential target sequences in the human genome. This novel DNA delivery system is discussed in the context of existing methods for genetic modification of human cells.